首页> 外文学位 >Statistical analysis for on-chip power grid networks and interconnects considering process variation.
【24h】

Statistical analysis for on-chip power grid networks and interconnects considering process variation.

机译:考虑过程变化的片上电网网络和互连的统计分析。

获取原文
获取原文并翻译 | 示例

摘要

With the aggressive scaling down of semiconductor VLSI devices from 65nm to 45 nm, 32nm, the process induced variability becomes the major design concern. The fundamental change in VLSI chip design in current and future nodes is that what has been designed will not agree with the products manufactured due to the uncertainties in the manufacture processes. Even worse, the variabilities keep growing as the technology scales down continually. The process induced variations manifest themselves from wafer to wafer, die-to-die and device to device within a die. Some are systematic variabilities and some are random variabilities, which have to leave extra margin for worst case. The Monte Carlo method can come to the rescue by simulating the probability of the worst case in a random way. However, it is well known this approach is very time consuming and forbidding slow. It is highly desirable to have more efficient statistical modeling and simulation techniques and tools to guide the design in the presence of uncertainties in the nanometer VLSI regime.;In this dissertation, the influence of the variability, such as threshold voltage variation, interconnect wire height, width variation, on the performance of power grid delivery networks and signal interconnect circuits, are studied. First we develop a new statistical method, which is based on concept of Hermite polynomial chaos, to analyze power grid voltage drop variations of on-chip power grid networks. The new approach considers both wire variations and sub-threshold leakage current variations, which are modeled as lognormal distribution random variables. We also consider spacial correlation of the leakage variables by applying orthogonal decomposition to map the correlated random variables into independent ones before the analysis. Second, we propose a more efficient statistical analysis approach, StoEKS, in which the extended Krylov subspace method is used to speedup the solution procedure of the variational circuit equations. By using the model order reduction technique, StoEKS partially mitigates circuit-size increasing problem associated with the augmented matrices from the Galerkin-based spectral statistical method. Finally, we propose an efficient method to calculate variational interconnect delay, which is a crucial step in the statistical static timing analysis(SSTA). We apply Numerical quadrature method based on orthogonal polynomial representation (OPR) of statistical variations to derive the non-linear, non-Gaussian analytic interconnect delay models in terms of the interconnect wire width, height variations. It can take in variational parameters in OPR form and outputs the delays computed in OPR form again, which is compatible with existing SSTA methods.
机译:随着半导体VLSI器件的尺寸从65nm急剧缩小到45nm,32nm,工艺引起的可变性成为主要设计关注点。当前和未来节点中VLSI芯片设计的根本变化是,由于制造工艺的不确定性,设计的产品与所生产的产品不一致。更糟糕的是,随着技术的不断缩小,变异性不断增长。工艺引起的变化在晶片内的晶片之间,晶片对晶片之间以及器件与器件之间表现出来。有些是系统性差异,有些是随机性差异,在最坏的情况下必须留有余地。蒙特卡洛方法可以通过以随机方式模拟最坏情况的概率来解救。但是,众所周知,这种方法非常耗时并且禁止缓慢。迫切需要有更有效的统计建模和仿真技术及工具,以指导在纳米VLSI方案存在不确定性的情况下进行设计。本文主要研究可变性的影响,例如阈值电压变化,互连线高度等。研究了宽度变化对电网传输网络和信号互连电路性能的影响。首先,我们基于Hermite多项式混沌概念开发了一种新的统计方法,以分析片上电网网络的电网压降变化。新方法同时考虑了导线变化和亚阈值泄漏电流变化,它们被建模为对数正态分布随机变量。在分析之前,我们还通过应用正交分解将相关的随机变量映射为独立的变量,来考虑泄漏变量的空间相关性。其次,我们提出了一种更有效的统计分析方法StoEKS,其中使用扩展的Krylov子空间方法来加快变分电路方程的求解过程。通过使用模型降阶技术,StoEKS可以部分缓解基于Galerkin的频谱统计方法中与增强矩阵相关的电路尺寸增加的问题。最后,我们提出了一种计算变体互连延迟的有效方法,这是统计静态时序分析(SSTA)中的关键步骤。我们基于统计变化的正交多项式表示(OPR)应用数值正交方法,以得出互连线宽度,高度变化方面的非线性,非高斯分析互连延迟模型。它可以采用OPR形式的变化参数,并再次输出以OPR形式计算的延迟,这与现有的SSTA方法兼容。

著录项

  • 作者

    Mi, Ning.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号