首页> 外文学位 >Silicon carbide thin film radiators and gallium antimonide photovoltaic device layers on ceramic substrates for solar-thermophotovoltaic application.
【24h】

Silicon carbide thin film radiators and gallium antimonide photovoltaic device layers on ceramic substrates for solar-thermophotovoltaic application.

机译:用于太阳能热光伏应用的陶瓷基板上的碳化​​硅薄膜散热器和锑化镓镓光伏器件层。

获取原文
获取原文并翻译 | 示例

摘要

The global annual energy consumption is projected to rise from its current value of 13 Terawatt-years to about 30 Terawatt-years within the next 40 years. Growing concerns over global warming and diminishing supplies of petroleum have highlighted the need to reduce carbon emissions and employ non-fossil fuels. In contrast to current and past dependence on a single source of energy for virtually all the power generated in the US, future demands are likely to be met by a variety of energy production technologies. It is the feeling of many that the key to developing a reliable and renewable energy source lies with the sun. In fact, it has already been proven that if, one day, we could harness all the energy the sun provides, there will never be a need for fossil fuels. It is this understanding that sparked the interest for the research presented in this thesis. Unfortunately, current technologies only allow us to capture a small percent of the total energy provided by the sun and at a very high-cost. Increasing the amount of power generated from solar radiation will become increasingly important, but without this technology being affordable, it is practically useless. The focus of this research is on two key components of a relatively new photovoltaic technology namely, solar thermophotovoltaics (STPV). In the STPV concept, the solar radiation is concentrated onto a solid (intermediate radiator) that could be heated to higher temperature and which in turn will radiate infrared photons as a blackbody. The photons from the intermediate radiator are then captured and directly converted to electric power by semiconductor photovoltaic devices. The two goals of this research were: (a) to develop a low-cost thin film based SiC radiator and (b) to develop low-cost III-V semiconductor crystalline thin films suitable for photovoltaic devices.;For low-cost radiators, we have successfully developed processes for the growth of silicon carbide (SiC) thin films by the atmospheric pressure chemical vapor deposition (APCVD) technique using Dimethylisopropylsilane (C5H8Si), 1,1, Dimethyl 1-silacyclopentane (C6 H14Si2), and 1,1,3,3-Tetramethyl 1,3-disilacyclobutane (C10H24 O4Si2) as single source monomolecular polymeric precursors. By using growth temperatures between 700 and 950 °C and dilution ratios of precursor to hydrogen (carrier gas) between 1:0 (no dilution) and 1:100, optimum conditions could be identified for each precursor chemical that resulted in crystalline SiC films on a variety of substrates such as ceramic SiC, Si, GaAs, and quartz. As-grown films were evaluated for their chemical composition, crystalline quality, and surface morphology using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM), respectively. SiC films deposited under different conditions were heated to high temperatures to study the blackbody emissive nature. The emission characteristics of the films were found to be similar to bulk SiC.;For low-cost photovoltaic device grade material, we have developed a process for growing thin film GaSb layers on low-cost SiC and AlN ceramic substrates. High-temperature melt epitaxy process has been used to re-crystallize GaSb continuous thin films on SiC and AlN ceramic-grade substrates from pre-synthesized GaSb pellets. Hydrogen ambient has been found to be the most suitable for obtaining highest quality films at 710 °C which is the melting point/growth temperature of GaSb. The chemical treatment of GaSb prior to growth for eliminating thick surface oxide layers has been found to be crucial for sticking of the films on the ceramic substrates. The as-grown films show natural surface texturing (pyramidal microtextures) which is beneficial for increasing the probability of photon absorption from the incident radiation.;Future research on stacking of thin film photovoltaic material grown using melt epitaxy with the thin film radiator could lead to high efficiency STPV systems that are inexpensive to produce in large scale. This will lead to wide-spread solar energy utilization for electricity generation.
机译:预计在未来40年内,全球年度能源消耗将从其当前的13兆瓦·年的值增加到大约30兆瓦·年。对全球变暖和石油供应减少的忧虑日益突出,这凸显了减少碳排放和使用非化石燃料的必要性。与当前和过去对美国几乎所有发电所依赖的单一能源的依赖相比,未来的需求可能会通过多种能源生产技术来满足。许多人认为,开发可靠和可再生能源的关键在于阳光。实际上,已经证明,如果有一天,我们可以利用太阳提供的所有能量,就永远不需要化石燃料。正是这种认识激发了本文提出的研究兴趣。不幸的是,当前的技术只能使我们以很高的成本捕获太阳提供的总能量的一小部分。增加由太阳辐射产生的电量将变得越来越重要,但是如果不能负担得起该技术,它实际上将无用。这项研究的重点是相对较新的光伏技术的两个关键组成部分,即太阳能光伏(STPV)。在STPV概念中,太阳辐射集中在一个固体(中间辐射器)上,该固体可以加热到更高的温度,进而将红外光子辐射为黑体。然后,来自中间辐射器的光子被半导体光伏器件捕获并直接转换为电能。这项研究的两个目标是:(a)开发一种低成本的基于SiC的薄膜散热器,以及(b)开发适用于光伏器件的低成本的III-V半导体晶体薄膜。我们已经成功开发了通过常压化学气相沉积(APCVD)技术使用二甲基异丙基硅烷(C5H8Si),1,1,二甲基1-硅环戊烷(C6 H14Si2)和1,1来生长碳化硅(SiC)薄膜的工艺1,3,3-四甲基1,3-二硅环丁烷(C10H24 O4Si2)作为单源单分子聚合物前体。通过使用700至950°C的生长温度以及1:0(无稀释)至1:100的前驱体与氢气(载气)的稀释比,可以为每种前驱体化学品确定最佳条件,从而在硅片上形成结晶SiC膜。各种衬底,例如陶瓷SiC,Si,GaAs和石英。使用傅立叶变换红外光谱(FTIR),X射线衍射(XRD)和扫描电子显微镜(SEM)分别评估成膜后的膜的化学组成,晶体质量和表面形态。将在不同条件下沉积的SiC薄膜加热至高温,以研究黑体的发射性质。发现薄膜的发射特性类似于块状SiC。对于低成本光伏器件级材料,我们开发了一种在低成本SiC和AlN陶瓷基板上生长薄膜GaSb层的工艺。高温熔融外延工艺已用于从预先合成的GaSb颗粒中重结晶SiC和AlN陶瓷级基板上的GaSb连续薄膜。已经发现氢气最适合于在710°C(GaSb的熔点/生长温度)下获得最高质量的薄膜。已发现在生长之前对GaSb进行化学处理以消除厚的表面氧化物层对于将膜粘附在陶瓷基材上至关重要。成膜后的薄膜显示出自然的表面纹理(金字塔形的微观结构),这有利于增加入射光吸收光子的可能性。;利用熔融外延与薄膜散热器堆叠生长的薄膜光伏材料的未来研究可能会导致廉价生产的高效STPV系统。这将导致太阳能广泛用于发电。

著录项

  • 作者

    Notaro, Douglas Scott.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号