首页> 外文学位 >Electrochemical, optical, photochemical, and chromatographic studies of carotenoid cation radicals and dications: Adsorption, polymerization, and isomerization properties.
【24h】

Electrochemical, optical, photochemical, and chromatographic studies of carotenoid cation radicals and dications: Adsorption, polymerization, and isomerization properties.

机译:类胡萝卜素阳离子自由基和阳离子的电化学,光学,光化学和色谱研究:吸附,聚合和异构化性质。

获取原文
获取原文并翻译 | 示例

摘要

Polymeric products, which are formed by reaction of the dications of 7E,{dollar}7spprime Z{dollar}-diphenyl-{dollar}7,7spprime{dollar}-diapocarotene (III) generated by electrochemical oxidation in dichloromethane with the neutral carotenoid, are adsorbed on various electrode surfaces. An apparent average molar mass of 5400 g/mol electron was calculated from simultaneous electrochemical quartz crystal microbalance (EQCM) measurements. The green, fiberlike structure observed by scanning electron and optical microscopy confirms the formation of polymers. X-ray microanalysis of the surface composed of an uneven, layered structure indicates that electrolyte counter anions {dollar}rm PFsb6sp-{dollar} are associated with the deposited material. Cathodic stripping voltammetry indicates that the film thickness ranges from 0.16 to 0.84 {dollar}mu{dollar}m as the charge increases from 10.0 to 51.1 {dollar}mu{dollar}C. Cation radicals of III show no adsorption behavior nor do the dications of carotenoids terminally substituted with one cyclohexene ring (V) or containing a triple bond at C15 (IV). Apparently, a diphenyl substituted carotenoid containing only double bonds in the backbone is required to observe this unusual behavior.; Electrochemical oxidation of all-trans canthaxanthin (II) and {dollar}beta{dollar}-carotene (I) in dichloromethane leads to significant trans-to-cis isomerization, with cis isomers accounting for about 40% of the products formed. The electrochemically generated isomers were separated by reverse-phase high performance liquid chromatography and identified as 9-cis, 13-cis, 15-cis and 9,13-dicis isomers of the carotenoids by {dollar}rmsp1H{dollar}-NMR spectroscopy and optical spectroscopy (Q-ratio). The results of simultaneous bulk electrolysis and optical absorption spectroscopy indicate the following isomerization mechanism: the all-trans cation radicals and/or dications formed by electrochemical oxidation of all-trans carotenoids can easily undergo geometrical isomerization to form cis cation radicals and/or dications. The latter are converted by the comproportionation equilibrium to cation radicals which are then transformed to neutral cis carotenoids by exchanging one electron with neutral carotenoids. AM1 molecular orbital calculations, which show that the energy barriers of configurational transformation from trans to cis are much lower in the cation radical and dication species than in the neutral molecule, strongly support the first step of this mechanism.; When canthaxanthin (II) and {dollar}beta{dollar}-carotene (I) dichloromethane solutions are treated with small amounts of ferric chloride {dollar}({lcub}le{rcub} 0.26{dollar} mol equiv.), extensive photodegradation of additional neutral carotenoid occurs upon subsequent irradiation with near-UV to visible light. The rate of this photodegradation is independent of the neutral carotenoid concentration at a given initial {dollar}rm FeClsb3{dollar} concentration and first-order in initial {dollar}{lcub}rm FeClsb3{rcub} (ksb1 = 1.43{dollar} and 3.30 {dollar}rm minsp{lcub}-1{rcub}{dollar} for II and I, respectively). The data are consistent with a mechanism in which Fe(II) is photochemically converted in the presence of {dollar}rm CHsb2Clsb2{dollar} to Fe(III), which then oxidizes unreacted neutral carotenoids.; This dissertation also presents that canthaxanthin cation radicals in dichloromethane form cation dehydrodimers at low temperature or upon irradiation with near-UV to visible light, which have an absorption maximum near 770 nm and a reduction peak at 20 mV in cyclic voltammetry. It is proposed that cation radicals associate with parent molecules and then undergo two subsequent steps to form the final cation dehydrodimers. In the presence of supporting electrolytes, canthaxanthin cation radicals form ion-pairs with the anions {dollar}rm PFsb6sp-,{dollar} resulting in a 10 nm blue-shift of the absorption maximum of the catio
机译:聚合产物是由7E的二价螯合剂(美元)7spprime Z {dollar}-二苯基-{dollar} 7,7spprime {dollar}-二茂胡萝卜素(III)与二氯甲烷中性类胡萝卜素反应生成的,被吸附在各种电极表面上。根据同时进行的电化学石英晶体微量天平(EQCM)测量,计算得出表观平均摩尔质量为5400 g / mol电子。通过扫描电子和光学显微镜观察到的绿色纤维状结构证实了聚合物的形成。对由不均匀的层状结构组成的表面进行的X射线微分析表明,电解质抗衡阴离子{rm} PFsb6sp- {dollar}与沉积的材料相关。阴极溶出伏安法表明,随着电荷从10.0 C增加到51.1 C,膜厚度在0.16到0.84μM。 III的阳离子自由基不显示吸附行为,也不显示末端被一个环己烯环(V)取代或在C15处包含三键的类胡萝卜素的指示(IV)。显然,需要在主链中仅包含双键的二苯基取代的类胡萝卜素才能观察到这种异常行为。全反式角黄素(II)和{beta} {dollar}-胡萝卜素(I)在二氯甲烷中的电化学氧化导致显着的反式-顺式异构化,顺式异构体约占所形成产物的40%。通过反相高效液相色谱法分离电化学生成的异构体,并通过{dollar} rmsp1H {dollar} -NMR光谱法鉴定为类胡萝卜素的9-顺式,13-顺式,15-顺式和9,13-dicis异构体。光谱(Q比率)。同时本体电解和光吸收光谱法的结果表明以下异构化机理:通过全反类胡萝卜素的电化学氧化形成的全反阳离子基团和/或支链很容易经历几何异构化以形成顺式阳离子基团和/或支链。后者通过相称平衡转化为阳离子自由基,然后通过将一个电子与中性类胡萝卜素交换,将其转化为中性顺式类胡萝卜素。 AM1分子轨道计算表明,阳离子基团和阳离子物种中,从反式到顺式构型转换的能垒比中性分子低得多,这强烈支持了这一机理的第一步。当用少量氯化铁{dol}}({lcub} le {rcub} 0.26 {dollar} mol当量)处理角黄素(II)和{beta} {dollar}-胡萝卜素(I)二氯甲烷溶液时,会发生大量光降解随后用近紫外光照射可见光时,会产生额外的中性类胡萝卜素。在给定的初始{dol} rmFeClsb3 {dol}浓度和初始{dol} {lcub} rm FeClsb3 {rcub}的一阶(ksb1 = 1.43 {dol}和II和I分别为3.30 {rm} rm minsp {lcub} -1 {rcub} {dollar}。该数据与其中Fe(II)在{rm} rm CHsb2Clsb2 {dol}的存在下光化学转化为Fe(III),然后氧化未反应的中性类胡萝卜素的机理一致。本文还提出,二氯甲烷中的邻苯二酚黄嘌呤阳离子自由基在低温下或在近紫外光下照射可见光时会形成阳离子脱氢二聚体,在循环伏安法中吸收最大值在770 nm附近,还原峰在20 mV。提出阳离子自由基与母体分子缔合,然后经历两个后续步骤以形成最终的阳离子脱氢二聚体。在支持电解质的存在下,角黄嘌呤阳离子自由基与阴离子{dol} rm PFsb6sp-,{dollar}形成离子对,导致阳离子吸收最大值发生10 nm蓝移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号