首页> 外文学位 >Surface acidity and catalytic activity of sulfated zirconia.
【24h】

Surface acidity and catalytic activity of sulfated zirconia.

机译:硫酸化氧化锆的表面酸度和催化活性。

获取原文
获取原文并翻译 | 示例

摘要

A faster, more precise method (TPD/IR) is presented for quantitative measurements of Lewis and Bronsted acidity on solid acid catalysts (SAC), using temperature programmed desorption of pyridine (TPD), with simultaneous diffuse reflectance FTIR measurement (DRIFTS). By correcting IR data in the reflectance domain, before converting to the Kubelka-Munk domain, good repeatability is obtained. The method is applied to {dollar}rm ZrOsb2{dollar} and {dollar}rm SOsb4/ZrOsb2{dollar} (SZ) solid acids, clearly resolving bimodal Lewis strength distributions on {dollar}rm ZrOsb2{dollar} and SZ. Bronsted acidity is present only on SZ, and a net gain of pyridine on SZ Bronsted sites between 25 and {dollar}rm 150spcirc C{dollar} is attributed to surface migration from Lewis sites. A simple model of pyridine desorption and surface migration from 2 types of Lewis sites and one type of Bronsted sites produces excellent agreement with the experimental data, and indicates that sulfation increases the average strength of the Lewis sites that desorb above {dollar}rm 175spcirc C.{dollar}; A pulsed feed alkylation study of gas-phase 2-butene with isobutane was conducted over sulfated zirconia (SZ) to determine the effect of temperature and feed composition on the dominant reactions and deactivation mechanisms. For all conditions, high initial conversion of 2-butene to {dollar}rm Csb5{dollar} was observed, which is attributed to alkylation followed by rapid cracking on the strongest acid sites. These sites deactivated quickly, and then the steady state catalyst behavior was observed to be different for different temperatures. During alkylation at {dollar}rm 50spcirc C,{dollar} the catalyst deactivated after 40 pulses, which is attributed to the build-up of trimethylpentane (TMP) products which do not readily desorb from the catalyst surface at this temperature, and was verified when pulses of pure 2,3,4-TMP over SZ produced similar cracking results. At {dollar}rm 100spcirc C,{dollar} the adsorbed alkylation and/or oligomerization products were very selectively cracked to form 2-butene, resulting in a net dehydrogenation of isobutane to 2-butene. At temperatures between {dollar}rm 150spcirc C{dollar} and {dollar}rm 250spcirc C,{dollar} the product selection was dominated by high cracking rates, but the catalytic activity remained stable with nearly complete conversion of 2-butene at the highest temperatures. It was also found that the deactivated catalyst at {dollar}rm 50spcirc C{dollar} could be regenerated by simply heating to {dollar}rm 150spcirc C,{dollar} which apparently removed the adsorbed hydrocarbons by either volatilization or cracking.
机译:提出了一种更快,更精确的方法(TPD / IR),该方法使用吡啶的程序升温脱附(TPD)和同时漫反射FTIR测量(DRIFTS)来定量测量固体酸催化剂(SAC)上的Lewis和布朗斯台德酸度。通过校正反射率域中的IR数据,在转换为Kubelka-Munk域之前,可以获得良好的可重复性。该方法适用于{rm} ZrOsb2 {dollar}和{rm} SOsb4 / ZrOsb2 {dollar}(SZ)固体酸,可以清楚地解析{rm} ZrOsb2 {dollar}和SZ上的双峰Lewis强度分布。布朗斯台德酸度仅存在于SZ上,SZ布朗斯台德位点在25和150spcirc C {美元}之间的吡啶净增加归因于从Lewis位点的表面迁移。一种简单的吡啶脱附和从两种类型的Lewis位点和一种类型的布朗斯特位点表面迁移的模型与实验数据产生了极好的一致性,并表明硫酸化提高了在175spcirc C以上解吸的Lewis位点的平均强度。 。{美元};在硫酸化氧化锆(SZ)上进行了气相2-丁烯与异丁烷的脉冲进料烷基化研究,以确定温度和进料组成对主要反应和失活机理的影响。在所有条件下,观察到2-丁烯向{rm} rm Csb5 {美元}的高初始转化率,这归因于烷基化,随后在最强的酸位上快速裂化。这些位点迅速失活,然后观察到不同温度下稳态催化剂的行为是不同的。在{rm} 50spcirc C的烷基化期间,{dollar}催化剂在40个脉冲后失活,这归因于三甲基戊烷(TMP)产物的积累,该产物在此温度下不易从催化剂表面脱附,并经过验证当纯的2,3,4-TMP脉冲超过SZ产生类似的开裂结果时。在约100℃的温度下,使吸附的烷基化和/或低聚产物非常选择性地裂化以形成2-丁烯,导致异丁烷的净脱氢为2-丁烯。在{dollar} rm 150spcirc C {dollar}和{dollar} rm 250 spcirc C之间的温度下,产物的选择主要由高裂化率决定,但是催化活性保持稳定,最高时2-丁烯几乎完全转化。温度。还发现在{rm} 50spcirc C {dollar}处的失活催化剂可通过简单地加热到{rm} 150spcirc C {dollar}而再生,这显然通过挥发或裂化除去了所吸附的烃。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号