首页> 外文学位 >Ab initio quantum chemical study electron transfer processes in the photosynthetic reaction center and scanning tunneling microscopy.
【24h】

Ab initio quantum chemical study electron transfer processes in the photosynthetic reaction center and scanning tunneling microscopy.

机译:从头算量子化学研究光合作用中心的电子转移过程和扫描隧道显微镜。

获取原文
获取原文并翻译 | 示例

摘要

Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. The method and the code developed within PSGVB suite of electronic structure programs have been applied to study the electron transfer process in two systems: the bacterial photosynthetic reaction center and the scanning tunneling microscope (STM). The calculated electronic couplings between chromophores on the L-side in the reaction center agree remarkably well with parameters obtained from recent quantum dynamical modeling of experimental data assuming an explicit intermediate mechanism. We have also computed couplings on the M-side of the reaction center, and find that the interaction of the primary donor to the M-side intermediate bacteriochlorophyll is quite small due to destructive interference of the two localized coupling matrix elements. This may explain the slow rate of electron transfer down the M-side of the reaction center. The calculated STM contrasts (modeled by the square of the tunneling matrix elements) of a series of functionalized alkanes are compared to the experimental images, most of the experimental observations can be qualitatively explained. More complicated theoretical considerations for the future work are given.;In addition, using PSGVB together with an accurate numerical Poisson-Boltzmann solver, we have carried out ab initio calculation of the redox potentials of bacteriochlorophyll and bacteriopheophytin in solution at the Hartree-Fock level. These results have implications for calculation of redox energies of the chromophores in the bacterial photosynthetic reaction center which are essential in understanding the electron transfer mechanism.
机译:使用非绝热态形式主义和伪谱数值方法,我们开发了一种高效的从头算量子化学方法来计算大分子的电子转移矩阵元素。该理论是在Hartree-Fock级别上开发的,并且通过与小型系统文献中的结果进行比较而得到验证。 PSGVB电子结构程序套件中开发的方法和代码已用于研究两个系统中的电子转移过程:细菌光合作用反应中心和扫描隧道显微镜(STM)。反应中心L侧发色团之间的计算电子耦合与从实验数据的最新量子动力学建模获得的参数非常吻合,并假设有明确的中间机理。我们还计算了反应中心M侧的偶联,发现由于两个局部偶联基质元素的破坏性干扰,主要供体与M侧中间细菌叶绿素的相互作用非常小。这可以解释电子向反应中心的M侧传递的缓慢速率。将一系列官能化烷烃的STM对比(由隧穿矩阵元素的平方建模)与实验图像进行比较,可以定性地解释大多数实验观察结果。此外,使用PSGVB和精确的数值泊松-玻尔兹曼求解器,我们从头开始计算了Hartree-Fock级溶液中细菌叶绿素和细菌脱氧叶绿素的氧化还原电位。 。这些结果对细菌光合作用反应中心中生色团的氧化还原能的计算具有重要意义,这对于理解电子转移机理至关重要。

著录项

  • 作者

    Zhang, Yu.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Chemistry Biochemistry.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号