首页> 外文学位 >Wave propagation in elastic cables with and without fluid interaction.
【24h】

Wave propagation in elastic cables with and without fluid interaction.

机译:有和没有流体相互作用的弹性电缆中的波传播。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research is to develop linear and nonlinear theories of wave propagation in extended elastic cables with and without fluid interaction. The motivation for doing so is the need to understand the dynamic response of long cable suspensions, the high frequency/short wavelength response of shorter suspensions, and transient response phenomena. This objective is achieved through both analytical and numerical investigations for cables in air and in water.;To this end, a mathematical model is derived for the three-dimensional nonlinear response of extended cables submerged in a surrounding quiescent fluid medium. An asymptotic form of this model is derived for the linear response of a cable in air having small equilibrium curvature. The linear model predicts decoupled in-plane and out-of-plane waves. The out-of-plane waves are non-dispersive and obey a classical theory. By contrast, the in-plane waves are dispersive and generate coupled longitudinal and transverse motions. Analysis of in-plane response reveals the existence of two distinct wave types: (1) transverse-dominant waves, (2) longitudinal-dominant waves whose characteristics are determined by two cut-off frequencies. Closed-form solutions demonstrate significant tension waves following disturbances or excitation in the normal direction.;The nonlinear theory of submerged cables is also decomposed into waves lying in and orthogonal to the equilibrium plane. For the out-of-plane theory, attention focuses on two nonlinear mechanisms governing wave response; namely, (1) hydrodynamic drag, and (2) finite centerline stretching (geometric stiffening). The major effect of hydrodynamic drag is to attenuate cable response away from the excitation source and to do so sharply as the excitation frequency increases. The major effect of geometric stiffening is to increase the wave propagation speed. Like the analysis of out-of-plane waves, the analysis of nonlinear in-plane waves reveals that hydro-dynamic drag preferentially attenuates the transverse-dominant wave type. For submerged cables of finite extent, an interesting low frequency tensioning phenomenon is resolved. The maximum dynamic tension occurs at the first cut-off frequency and beyond the second cut-off frequency there is a very sharp reduction in the dynamic tension.
机译:这项研究的目的是发展具有和没有流体相互作用的扩展弹性电缆中波传播的线性和非线性理论。这样做的动机是需要了解长电缆悬挂的动态响应,较短悬挂的高频/短波长响应以及瞬态响应现象。通过对空气和水中的电缆进行分析和数值研究,可以实现此目标。为此,推导了浸没在周围静止流体介质中的扩展电缆的三维非线性响应的数学模型。对于具有小的平衡曲率的空气中的电缆的线性响应,导出了该模型的渐近形式。线性模型预测面内和面外波的解耦。面外波是非弥散性的,服从经典理论。相反,面内波是分散的,并产生耦合的纵向和横向运动。平面内响应的分析揭示了两种不同的波类型的存在:(1)横向主导波,(2)纵向主导波,其特性由两个截止频率决定。闭合形式的解证明了在法向方向上受到扰动或激励后会产生明显的张力波。水下电缆的非线性理论也分解为位于平衡平面内且与平衡平面正交的波。对于平面外理论,注意力集中在控制波响应的两个非线性机制上。即(1)流体动力阻力,和(2)有限的中心线拉伸(几何刚度)。流体动力阻力的主要作用是衰减远离激励源的电缆响应,并随着激励频率的增加而急剧地衰减。几何刚度的主要作用是提高波的传播速度。像平面外波分析一样,对非线性平面内波的分析表明,水动力阻力会优先减弱横向主导波类型。对于有限程度的水下电缆,解决了一种有趣的低频张紧现象。最大动态张力出现在第一个截止频率处,超过第二个截止频率时,动态张力会急剧下降。

著录项

  • 作者

    Behbahani Nejad, Mohammad.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Mechanical engineering.;Ocean engineering.;Civil engineering.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号