首页> 外文学位 >Collision-free path planning.
【24h】

Collision-free path planning.

机译:无冲突路径规划。

获取原文
获取原文并翻译 | 示例

摘要

Motion planning is an important challenge in robotics research. Efficient generation of collision-free motion is a fundamental capability necessary for autonomous robots.; In this dissertation, a fast and practical algorithm for moving a convex polygonal robot among a set of polygonal obstacles with translations and rotations is presented. The running time is {dollar}O(c((n + k)N + n{dollar}logn)), where c is a parameter controlling the precision of the results, n is the total number of obstacle vertices, k is the number of intersections of configuration space obstacles, and N is the number of obstacles, decomposed into convex objects. This dissertation exploits a simple 3D passage-network to incorporate robot rotations as an alternative to complex cell decomposition techniques or building passage networks on approximated 3D C-space obstacles.; A common approach in path planning is to compute the Minkowski difference of a polygonal robot model with the polygonal obstacle environment. However such a configuration space is valid only for a single robot orientation. In this research, multiple configuration spaces are computed between the obstacle environment and the robot at successive angular orientations spanning {dollar}pi .{dollar} Although the obstacles do not intersect, each configuration space may contain intersecting configuration space obstacles (C-space obstacles). For each configuration space, the algorithm finds the contour of the intersected C-space obstacles and the associated passage network by slabbing the collision-free space. The individual configuration spaces are then related to one another by a heuristic called "proper links" that exploit spatial coherence. Thus, each level is connected to the adjacent levels by proper links to construct a 3D network. Dijkstra's algorithm is used to search for the shortest path in the 3D network. Finally, the path is projected onto the plane to show the final locus of the path.
机译:运动计划是机器人技术研究中的重要挑战。有效产生无碰撞运动是自主机器人必需的基本能力。本文提出了一种快速实用的算法,用于在一组多边形障碍物之间平移和旋转地移动凸面多边形机器人。运行时间为{美元} O(c((n + k)N + n {美元} logn)),其中c是控制结果精度的参数,n是障碍顶点的总数,k是配置空间障碍物的相交数,N是分解为凸形物体的障碍物数。本文利用一个简单的3D通道网络来结合机器人旋转,以替代复杂的细胞分解技术,或在近似的3D C空间障碍物上建立通道网络。路径规划中的一种常见方法是计算具有多边形障碍物环境的多边形机器人模型的Minkowski差。但是,这样的配置空间仅对单个机器人方向有效。在这项研究中,障碍环境与机器人之间在连续的角度方向上跨越{pi} {pi}计算了多个配置空间。尽管障碍物不相交,但每个配置空间可能包含相交的配置空间障碍物(C空间障碍物) )。对于每个配置空间,该算法通过对无碰撞空间进行分块,找到相交的C空间障碍物的轮廓以及相关的通道网络。各个配置空间然后通过一种利用空间一致性的称为“适当链接”的启发式方法相互关联。因此,每个级别通过适当的链接连接到相邻级别以构建3D网络。 Dijkstra的算法用于搜索3D网络中的最短路径。最后,将路径投影到平面上以显示路径的最终轨迹。

著录项

  • 作者

    Chen, Shiang-Fong.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号