首页> 外文学位 >Three-dimensional computational modeling of fluid-structure interaction: Study of diastolic function in a thin-walled left heart model.
【24h】

Three-dimensional computational modeling of fluid-structure interaction: Study of diastolic function in a thin-walled left heart model.

机译:流体-结构相互作用的三维计算模型:左心薄壁模型中舒张功能的研究。

获取原文
获取原文并翻译 | 示例

摘要

Aided by advancements in computer speed and modeling techniques, computational modeling of cardiac function has continued to develop over the past twenty years. These models have grown from static two-dimensional models that looked at either the associated fluid or solid mechanics to simulations that incorporate elaborate three-dimensional geometries with moving boundaries. The goal of the current study was to develop a computational method that provides blood-tissue interaction under physiologic Reynolds numbers, and then apply it to thin-walled models of cardiac chambers. To accomplish this goal, the Immersed Boundary Method was used to provide the interaction of the tissue and blood in response to fluid forces and changes in tissue pathophysiology. The fluid mass and momentum conservation equations were solved by Patankar's Semi-Implicit Method for Pressure Linked Equations (SIMPLE) to provide solution stability at physiologic Reynolds numbers. Initially, these methods were applied to a thin-walled, truncated ellipsoid model that contracted over a 100 msec period to test the feasibility of combining them to achieve physiologic Reynolds numbers. The methods were then applied to a left heart model of diastolic function consisting of the left ventricle, left atrium, and pulmonary flow. The input functions for this model consisted of the pulmonary driving pressure and time-dependent relationship for changes in tissue properties during the simulation. The results obtained from the left heart model were compared to clinically observed diastolic flow conditions for validation. The model was first applied to normal diastolic function. Then, cases involving delayed ventricular relaxation, increased ventricular stiffness, increased atrial contraction, and atrial fibrillation were compared to the normal case to illustrate the effect of these diseases on the flow fields.
机译:在计算机速度和建模技术的进步的帮助下,心功能的计算模型在过去的20年中一直在不断发展。这些模型已从研究相关流体或固体力学的静态二维模型发展为结合了复杂的具有移动边界的三维几何形状的模拟。当前研究的目的是开发一种计算方法,该方法在生理雷诺数下提供血液与组织之间的相互作用,然后将其应用于心室的薄壁模型。为了实现这一目标,采用浸入边界方法来提供组织和血液的相互作用,以响应流体力和组织病理生理学的变化。流体质量和动量守恒方程通过Patankar的压力链接方程的半隐式方法(SIMPLE)求解,以提供生理雷诺数下的溶液稳定性。最初,将这些方法应用于收缩了100毫秒的薄壁,截断的椭圆体模型,以测试将它们组合以实现生理雷诺数的可行性。然后将这些方法应用于由左心室,左心房和肺血流组成的舒张功能的左心模型。该模型的输入功能包括肺驱动压力和模拟过程中组织特性变化的时间相关关系。从左心脏模型获得的结果与临床观察到的舒张期血流情况进行比较以进行验证。该模型首先应用于正常舒张功能。然后,将涉及延迟性心室舒张,心室僵硬度增加,心房收缩增加和心房颤动的病例与正常病例进行比较,以说明这些疾病对流场的影响。

著录项

  • 作者

    Lemmon, Jack David, Jr.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Biology Animal Physiology.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号