首页> 外文学位 >Investigation of gold nanocrystals by ultrahigh vacuum cryogenic scanning tunneling microscopy.
【24h】

Investigation of gold nanocrystals by ultrahigh vacuum cryogenic scanning tunneling microscopy.

机译:超高真空低温扫描隧道显微镜研究金纳米晶体。

获取原文
获取原文并翻译 | 示例

摘要

Alkane thiol stabilized 28,000 amu Au nanocrystals (28k Au) supported on graphite and Au(111) substrates have been investigated using a newly-constructed cryogenic STM. STM measurements revealed that isolated nanocrystals are highly mobile on bare Au(111) and graphite, and cannot be imaged by STM even at cryogenic temperatures unless they are stabilized by inclusion in a nanocrystal film or by some surface defect. Using a Au substrate which was coated with a SAM of xylenedithiol to support the nanocrystals reduced their surface mobility to the point they could be imaged in isolation, but also reduced their overall binding to the surface.; Tunneling spectroscopy performed in conjunction with the STM imaging revealed that the charging energy of adding a single electron to a 28k Au nanocrystal, which has a diameter of 1.7 nm, plays an important role in the nanocrystal's electronic properties, and leads to a series of steps in the measured current-versus-voltage spectra. The semi-classical model of double-junction tunneling through a small center conductor was used to model this phenomenon which is known as the Coulomb staircase.; In some cases, a nanocrystal transferred to the tip and stabilized at its apex. Under these conditions, exceptionally clear Coulomb staircase tunneling behavior was observed. These spectra showed multiple charging steps and were in excellent agreement with the semi-classical model. Examination of the first derivative of the nanocrystal-on-tip spectra revealed small peaks in addition to the charging peaks. This additional structure was attributed to quantum size effect splitting of the electronic energy levels of the nanocrystal.
机译:使用新构建的低温STM研究了在石墨和Au(111)基底上负载的链烷硫醇稳定的28,000 amu Au纳米晶体(28k Au)。 STM测量表明,孤立的纳米晶体在裸露的Au(111)和石墨上具有很高的移动性,并且即使在低温下也无法通过STM成像,除非它们通过包含在纳米晶体膜中或某些表面缺陷而得以稳定。使用涂覆有二甲苯二硫醇的SAM的Au基底来支撑纳米晶体将其表面迁移率降低到可以孤立成像的程度,但是也降低了它们与表面的整体结合。结合STM成像进行的隧道光谱显示,向直径为1.7 nm的28k Au纳米晶体中添加单个电子的充电能在纳米晶体的电子特性中起重要作用,并导致一系列步骤在测得的电流对电压谱中通过一个小中心导体的双结隧穿的半经典模型被用来模拟这种现象,被称为库仑阶梯。在某些情况下,纳米晶体转移到尖端并稳定在其顶端。在这些条件下,观察到异常清晰的库仑阶梯隧道行为。这些光谱显示了多个充电步骤,并且与半经典模型非常吻合。对尖端纳米晶体光谱的一阶导数的检查显示了除充电峰以外的小峰。该附加结构归因于纳米晶体的电子能级的量子尺寸效应分裂。

著录项

  • 作者

    Harrell, Lee Elwyn.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号