首页> 外文学位 >Data lineage and information density in database visualization.
【24h】

Data lineage and information density in database visualization.

机译:数据库可视化中的数据沿袭和信息密度。

获取原文
获取原文并翻译 | 示例

摘要

Visual representations of data help users interpret and analyze information. We have identified two key issues in existing visualization systems: data lineage and information density. This dissertation defines these problems and details solutions for them. We show that our techniques can be applied in database visualization systems, and we discuss how they improve the usability of these systems.; The data lineage problem occurs when users apply a sequence of processing steps to input data sources; when viewing the final result, these users may wish to trace certain elements in the result back to the original input items. We call these types of queries data lineage queries. Current systems, e.g., geographic information systems or scientific visualization systems, provide little support for this task. In the first part of this dissertation, we discuss techniques for allowing users to access intermediate results efficiently while performing data lineage queries. We then introduce weak inversion and verification and show how they can be used to reconstruct the (approximate) lineage of derived data. Because they eliminate much of the irrelevant source data, weak inversion and verification can greatly reduce the amount of source data the end user must examine while performing a data lineage query.; Visualizations often display too much information, making it difficult for users to interpret them. Similarly, visualizations often display too little information, thereby underutilizing display space. In the second part of this dissertation, we describe the general principle of constant information density. We show how both semantic and spatial transformations based on constant information density can be applied to create visualizations with appropriate density, thereby minimizing clutter and sparseness in the display. We describe an end-user programming environment in which users can construct visualizations with constant information density.
机译:数据的可视表示形式可以帮助用户解释和分析信息。我们已经确定了现有可视化系统中的两个关键问题:数据沿袭和信息密度。本文定义了这些问题,并针对这些问题提出了详细的解决方案。我们证明了我们的技术可以应用在数据库可视化系统中,并且我们讨论了它们如何提高这些系统的可用性。当用户对输入数据源应用一系列处理步骤时,就会发生数据沿袭问题。在查看最终结果时,这些用户可能希望将结果中的某些元素追溯到原始输入项。我们称这些类型的查询为数据沿袭查询。当前的系统,例如,例如,地理信息系统或科学可视化系统,几乎无法为该任务提供支持。在本文的第一部分,我们讨论了允许用户在执行数据沿袭查询时有效访问中间结果的技术。然后,我们介绍弱反演和验证,并展示如何将其用于重构派生数据的(近似)谱系。因为它们消除了许多不相关的源数据,所以弱的反转和验证可以大大减少最终用户在执行数据沿袭查询时必须检查的源数据量。可视化经常显示太多信息,使用户难以解释它们。同样,可视化通常显示的信息太少,从而无法充分利用显示空间。在本文的第二部分,我们描述了恒定信息密度的一般原理。我们展示了如何基于恒定信息密度的语义和空间变换都可以应用于以适当密度创建可视化效果,从而最大程度地减少显示中的混乱和稀疏。我们描述了一个最终用户编程环境,在该环境中,用户可以构建具有恒定信息密度的可视化文件。

著录项

  • 作者

    Woodruff, Allison Gyle.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号