首页> 外文学位 >Pavement deflection analysis using stochastic finite element method.
【24h】

Pavement deflection analysis using stochastic finite element method.

机译:使用随机有限元方法的路面挠度分析。

获取原文
获取原文并翻译 | 示例

摘要

In order to assess the structural characteristics of a pavement-subgrade system, non-destructive, in-situ tests together with backcalculation procedures are widely used. Traditionally, the analytical models adopted for this process are deterministic, however, in reality, the quantities involved in the problem may be random variables. Neglecting the variable nature of the system parameters, e.g., highway material properties, may affect the reliability of the pavement response prediction. On the other hand, inverse solutions to pavement problems are often ill-conditioned and sensitive to the input parameters. Past experience has shown that the estimated values of a backcalculated parameter by different agencies may vary by several orders of magnitude, representing a high level of uncertainty in the estimated parameter. Unless the uncertainty is quantified, practitioners are forced to resort to higher safety factors, which is neither economical nor always conservative.; The present study investigates, rigorously, the behavior of a pavement-subgrade system from a stochastic point of view, and addresses the sensitivity of response variation to variations in layer properties. The results of a forward analysis are utilized to establish a relation between input and output statistical moments in order to interpret the pavement deflection data stochastically. The proposed framework in this research allows one to quantify the uncertainty level in backcalculated system parameters. It also provides a tool to infer the accuracy of the pavement performance prediction based on mechanistic models.; For the purpose of introducing the stochastic approach, the perturbation technique is applied to an idealized, two-layered, pavement-subgrade system for the case of (a) a static solution based on Odemark definition of equivalent layer thickness; and (b) a frequency domain solution to a single degree of freedom (SDOF) system using an impedance function. The methodology is then extended to a stochastic finite element framework in order to analyze boundary-valued problems of more complex geometry and distribution of material properties. The perturbation method is a mean-based, second-moment analysis for the second-order accurate expected value, and first-order accurate cross-covariance function. For the dynamic analysis, viscoelastic response of the pavement is obtained by using the periodic-load analysis approach and Fourier synthesis.; Based on the results of the simulations, it is demonstrated that, the sensitivity of surface deflections is significantly higher to the subgrade properties than those of the surface and base layers, both in a static and a dynamic analysis. Consequently, it is concluded that, the low dominant frequency of the falling weight deflectometer (FWD) load limits the capability of this test in characterizing surface layer properties. Using the concept of coefficient matrix, it is illustrated that, the low sensitivity of deflections to surface layer properties can be interpreted as a high level of uncertainty in the estimated pavement moduli in a backcalculation exercise. It is indicated that uncertainties in backcalculated parameters often result in an unacceptable pavement performance prediction. Moreover, the physical behavior of the layers are identified by finding the contribution of each layer to the total deflection response of the system using the notation of contribution ratio.
机译:为了评估路面-路基系统的结构特性,无损现场测试以及反算程序被广泛使用。传统上,此过程采用的分析模型是确定性的,但实际上,问题中涉及的数量可能是随机变量。忽略系统参数的可变性质(例如,公路材料属性)可能会影响路面响应预测的可靠性。另一方面,路面问题的反解通常条件不佳,并且对输入参数敏感。过去的经验表明,不同机构对反算参数的估计值可能会发生几个数量级的变化,这代表了估计参数的高度不确定性。除非对不确定性进行量化,否则从业者不得不诉诸更高的安全系数,这既不经济也不总是保守的。本研究从随机的角度严格地研究了路面-路基系统的行为,并解决了响应变化对层特性变化的敏感性。利用前向分析的结果来建立输入和输出统计力矩之间的关系,以便随机地解释路面偏转数据。这项研究中提出的框架允许量化反算系统参数中的不确定性水平。它还提供了一种基于机理模型来推断路面性能预测准确性的工具。为了引入随机方法,将扰动技术应用于理想化的两层路面-路基系统,用于(a)基于等效层厚的Odemark定义的静态解决方案; (b)使用阻抗函数的单自由度(SDOF)系统的频域解决方案。然后将该方法扩展到随机有限元框架,以便分析更复杂的几何形状和材料属性分布的边值问题。摄动方法是基于平均值的第二阶矩分析,用于二阶精确期望值和一阶精确互协方差函数。对于动力分析,通过使用周期性载荷分析方法和傅里叶综合获得人行道的粘弹性响应。根据仿真结果,在静态和动态分析中,表面变形对路基特性的敏感性明显高于表面层和基层的敏感性。因此,得出的结论是,落锤偏转计(FWD)负载的低主导频率限制了该测试表征表面层特性的能力。使用系数矩阵的概念可以说明,挠度对表层特性的低敏感性可以解释为在反算演算中估算的路面模量中的高度不确定性。结果表明,反算参数的不确定性经常导致不可接受的路面性能预测。此外,通过使用贡献率的表示法找到每一层对系统总挠度响应的贡献,可以识别各层的物理行为。

著录项

  • 作者

    Parvini, Mehdi.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号