首页> 外文学位 >Molecular dynamics and quantum chemistry studies of the protein bacteriorhodopsin.
【24h】

Molecular dynamics and quantum chemistry studies of the protein bacteriorhodopsin.

机译:细菌视紫红质蛋白的分子动力学和量子化学研究。

获取原文
获取原文并翻译 | 示例

摘要

Molecular dynamics (MD) simulations and Quantum Chemistry (QC) calculations are employed to study the structure and function of the protein bacteriorhodopsin (bR), a 26 kD protein which residues in the purple membrane of the bacterium Halobacterium halobium. Bacteriorhodopsin undergoes a light-driven cyclic process, which pumps protons across the membrane, in order to maintain a proton gradient necessary for ATP synthesis. The cycle is initiated through a trans → cis isomerization of the chromophore retinal, which is bound to a lysine residue via a protonated Schiff base linkage. Initially, MD simulations are used to develop a refined three-dimensional structure of the protein, using the experimentally determined electron-microscopy structure of bR as a basis, and to determine equilibrium positions for several water molecules within the protein interior. MD simulations are then used to model the early isomerization reaction events in the bR trans and 13-cis photocycles. The simulations yield proposed structures consistent with the J, K, and L intermediates observed for these photocycles and offers a suggestion as to why an unprotonated retinal Schiff base intermediate, i.e., an M state, is not formed in the 13-cis photocycle. The simulations suggest that leakage from the 13-cis to the trans cycle arises due to an initial 13-cis,15- syn → all-trans,15-anti "bicycle peddle" photoisomerization. Electronic excitations and conformational potential surfaces of retinal in vacuo and in bacteriorhodopsin are determined by means of the ab initio CASSCF method. The calculations account for the protein environment by explicitly including all protein partial atomic charges into the electronic Hamiltonian. The calculations are applied to an ensemble of bacteriorhodopsins generated by molecular dynamics simulations using a CHARMM force field with special parameters for retinal torsions. Spectral calculations successfully reproduce a shift in absorption maxima between native bacteriorhodopsin and its D85N mutant and demonstrate that the broad absorption spectrum of bacteriorhodopsin is mainly caused by the fluctuations of retinal's internal degrees of freedom. Calculations are also carried out to describe the potential surface governing the dark adaptation of an ensemble of bacteriorhodopsins. The resulting rate of dark adaptation at room temperature k∼10-5s-1 and its 1000-fold enhancement through Asp-85 protonation are in agreement with experiment. The primary all-trans → 13- cis photoisomerization of retinal in bacteriorhodopsin has been investigated by means of quantum chemical and combined classical/quantum mechanical simulations employing the density matrix evolution method. Ab initio calculations on an analogue of a protonated Schiff base of retinal in vacuo reveal two closely lying excited states S1 and S2, the potential surfaces of which intersect along the reaction coordinate through an avoided crossing, and then exhibit a second weakly avoided crossing or a conical intersection with the ground state surface.
机译:分子动力学(MD)模拟和量子化学(QC)计算用于研究细菌视紫红质蛋白(bR)的结构和功能,该蛋白为26 kD蛋白质,残留在细菌Halobacterium halobium的紫色膜中。细菌视紫红质经历了光驱动的循环过程,该过程将质子泵过膜,以维持ATP合成所需的质子梯度。通过生色团视网膜的反式→顺式异构化来启动该循环,生色团视网膜通过质子化的席夫碱键与赖氨酸残基结合。最初,MD模拟用于以实验确定的bR电子显微镜结构为基础,开发蛋白质的精细三维结构,并确定蛋白质内部几个水分子的平衡位置。然后使用MD模拟对bR反式和13-顺式光循环中的早期异构化反应事件进行建模。该模拟产生了与针对这些光循环观察到的J,K和L中间体一致的拟议结构,并提供了有关为何在13顺式光循环中未形成未质子化的视网膜席夫碱中间物(即M状态)的建议。模拟表明,由于最初的13-顺式,15-顺式→全反式,15-反“自行车兜售”光致异构化,引起了从13-顺式至反式循环的泄漏。真空中和细菌视紫红质中视网膜的电子激发和构象电位表面是通过从头开始的CASSCF方法确定的。该计算通过将所有蛋白质部分原子电荷明确纳入电子哈密顿量来说明蛋白质环境。该计算适用于通过使用CHARMM力场的分子动力学模拟产生的细菌视紫红质的合奏,其中CHARMM力场具有用于视网膜扭转的特殊参数。光谱计算成功地再现了天然细菌视紫红质与其D85N突变体之间最大吸收的位移,并证明了细菌视紫红质的宽吸收光谱主要是由视网膜内部自由度的波动引起的。还进行了计算以描述控制细菌视紫红质集合的暗适应的潜在表面。在室温k〜10-5s-1下产生的暗适应率及其通过Asp-85质子化产生的1000倍增强与实验一致。细菌视紫红质中视网膜的主要全反式→13-顺式光异构化已通过量子化学方法和结合经典/量子力学模拟的密度矩阵演化方法进行了研究。在真空中视网膜质子化席夫碱类似物的从头算计算显示出两个紧密分布的激发态S1和S2,其势能面通过避免的交叉沿反应坐标相交,然后表现出第二个弱避免的交叉或圆锥形与基态表面相交。

著录项

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Chemistry Physical.;Chemistry Biochemistry.;Biology Microbiology.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号