首页> 外文学位 >Probing the band structure and local electronic properties of low-dimensional semiconductor structures.
【24h】

Probing the band structure and local electronic properties of low-dimensional semiconductor structures.

机译:探索低维半导体结构的能带结构和局部电子性质。

获取原文
获取原文并翻译 | 示例

摘要

Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling.;Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM).;A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces.;The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in comparison to that of the 2D alloy layer.;The surface composition and band structure of ordered horizontal Sb2Te3 nanowires induced by femtosecond laser irradiation of a thin film are investigated, revealing a band gap modulation between buried Sb2Te3 nanowires and the surrounding insulating material. Finally, STM and STS are used to investigate the band structure of BiSbTe alloys at room temperature, revealing both the Fermi level and Dirac point located inside the bulk bandgap, indicating bulk-like insulating behavior with accessible surface states.
机译:低尺寸半导体结构对于广泛的应用很重要,并且纳米级制造的最新进展为各种材料的日益精确的纳米工程化铺平了道路。因此,至关重要的是,必须全面了解纳米级材料的物理学,以释放纳米技术的全部潜能,这需要开发日益复杂的仪器和模型。特别令人关注的是纳米态的局部态密度(LDOS)之间的关系低维结构以及能带结构和局部电子性质。本文研究了从零维(0D)量子点(QD)到二维(2D)薄膜的纳米结构的能带结构,LDOS和局部电子性质,综合了包括泊松-薛定inger在内的计算和实验方法带结构计算,扫描隧道显微镜(STM),扫描隧道光谱(STS)和扫描热电显微镜(SThEM)。;提出了一种使用准3D转换矩阵用SThEM量化局部塞贝克系数(S)的方法对于直接转换温度梯度感应电压S的方法。对于GaAs pn结,所得的S曲线与使用自由载流子浓度曲线计算得出的曲线一致。这种组合的计算-实验方法有望实现跨各种异质结构界面的S的纳米级测量;局部载流子浓度n在外延InAs / GaAs QD上进行分布,其中SThEM用于对温度梯度引起的温度分布进行分布电压,该电压转换为局部S的轮廓,最后转换为n轮廓。将S轮廓转换为导带边缘轮廓,并与Poisson-Schrodinger带边缘仿真进行比较。组合的计算-实验方法表明,与二维合金层相比,量子点中心的n减小了。研究飞秒激光辐照薄膜产生的有序水平Sb2Te3纳米线的表面组成和能带结构,揭示了Sb2Te3纳米线与周围绝缘材料之间的带隙调制。最后,STM和STS用于研究BiSbTe合金在室温下的能带结构,揭示了位于体带隙内的费米能级和狄拉克点,表明具有类似表面状态的类体绝缘行为。

著录项

  • 作者

    Walrath, Jenna Cherie.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号