首页> 外文学位 >Robust active vibration control of thin plate systems with parameters uncertainties.
【24h】

Robust active vibration control of thin plate systems with parameters uncertainties.

机译:参数不确定的薄板系统的鲁棒主动振动控制。

获取原文
获取原文并翻译 | 示例

摘要

In engineering practices, most of the complicated systems or structures, e.g., wing of aircraft, chassis of automobile or case, etc . are modelled as thin plates, and subjected to various kinds of excitations, such as machinery dynamic unbalance, earthquake, wind, wave etc. which induce vibrations. Usually, vibrations that occur in these systems or structures are undesirable. Not only can they accelerate fatigue and failure of the structures, but also degrade the system's performances. Hence, vibration control becomes one of the most important research topics, and leads to its rapid development and successful application in the fields of mechanical, structural and aeronautical engineering for decades.; This thesis focuses on robust analysis and active controller synthesis for thin plate systems with parameter uncertainties. To thoroughly address the issues of robust active vibration control (RAVC) design for such systems, three aspects have been studied: modelling and vibration analysis; controllability and observability analyses, selection of optimal actuator/sensor locations; and controller synthesis.; Firstly, the modelling and vibration analysis for thin plate systems with parameters uncertainties are presented. Vibration analysis is discussed using complex modal theory and state space description techniques. An algorithm is developed real-time for system modal parameter identification from the test data contaminated with noise using recursive ARMAX approach. Robust determination of model order is studied based on the Hankel singular value by optimizing average component cost and performance index. Modal tests are carried out to provide the accurate data for modelling.; Secondly, the controllability and observability for thin plate systems are investigated using SVD and the degree of controllability and observability. Based on the robustness index, the analyses are expanded to the systems with parameters uncertainties, and some new criteria are proposed to determine the number and location of actuator/sensor. The influences of measurement noise on the optimal actuator/sensor locations are discussed using matrix perturbation theory and condition number approach.; Thirdly, a novel robust synthesis method of active vibration controller for thin plate systems with parameters uncertainties is developed using variable parameter feedback control. It includes the following two steps: (1) for a nominal vibration system, an active controller based on the eigenvalue assignment is synthesized using the complex modal theory, parameter optimization, linear matrix inequality and stability techniques, i.e., AVC design; (2) for the systems with parameters uncertainties, the robust active controller is synthesized by adjusting the parameters of the obtained AVC system, using the delta-stability control, Lyapunov approach and robust eigenvalue assignment. It is a simple and effective method, and is easy to be realized for real-time control.; Fourthly, a fuzzy model-based controller is developed using fuzzy logic control (FLC) approach for comparison. In the first step the fuzzy model of the studied system is identified using rule-based or relation-based approach. In the second step, an adaptive fuzzy controller is developed, and the algorithms assess the output of the controller on-line, a suitable control signal is computed from the fuzzy relation and applied to the excitation loop every time-step. It is robust against parameters uncertainties and external disturbances.; Finally, the numerical simulation and experimental investigation of robust control for a thin plate with parameters uncertainties are carried out. The control algorithms and program are also outlined, and implemented on a real system.*; *Originally published in DAI Vol. 60, No. 6. Reprinted here with corrected author name.
机译:在工程实践中,大多数复杂的系统或结构,例如飞机机翼,汽车底盘或箱子等。以薄板为模型,并受到各种激励,例如机械动态不平衡,地震,风,浪等,它们会引起振动。通常,在这些系统或结构中发生的振动是不希望的。它们不仅会加速结构的疲劳和故障,还会降低系统的性能。因此,振动控制成为最重要的研究课题之一,并使其在机械,结构和航空工程领域迅速发展并成功应用了数十年。本文重点研究具有参数不确定性的薄板系统的鲁棒分析和有源控制器综合。为了彻底解决此类系统的鲁棒主动振动控制(RAVC)设计问题,已经研究了三个方面:建模和振动分析;可控性和可观察性分析,最佳致动器/传感器位置的选择;和控制器综合。首先,给出了参数不确定的薄板系统的建模与振动分析。使用复杂的模态理论和状态空间描述技术讨论了振动分析。使用递归ARMAX方法,实时开发了一种算法,用于从受噪声污染的测试数据中识别系统模态参数。通过优化平均零件成本和性能指标,基于汉克奇异值研究了模型阶数的稳健确定。进行模态测试以提供用于建模的准确数据。其次,利用SVD方法研究了薄板系统的可控性和可观测性,以及可控性和可观测性的程度。基于鲁棒性指标,将分析扩展到参数不确定的系统,并提出一些新的标准来确定执行器/传感器的数量和位置。使用矩阵摄动理论和条件数方法讨论了测量噪声对最佳执行器/传感器位置的影响。第三,利用变参数反馈控制,开发了一种具有参数不确定性的薄板系统主动振动控制器鲁棒综合方法。它包括以下两个步骤:(1)对于标称振动系统,使用复模态理论,参数优化,线性矩阵不等式和稳定性技术(即AVC设计)来合成基于特征值分配的有源控制器。 (2)对于具有参数不确定性的系统,使用增量稳定控制,Lyapunov方法和鲁棒特征值分配,通过调整获得的AVC系统的参数来合成鲁棒有源控制器。这是一种简单有效的方法,很容易实现实时控制。第四,利用模糊逻辑控制(FLC)方法开发了基于模糊模型的控制器进行比较。第一步,使用基于规则或基于关系的方法来识别所研究系统的模糊模型。第二步,开发了自适应模糊控制器,算法在线评估控制器的输出,从模糊关系中计算出合适的控制信号,并在每个时间步上将其应用于励磁回路。它对参数不确定性和外部干扰具有鲁棒性。最后,对参数不确定的薄板进行鲁棒控制的数值模拟和实验研究。还概述了控制算法和程序,并在实际系统上实现。*; *最初发表于DAI Vol。 60,编号6。此处转载了正确的作者姓名。

著录项

  • 作者

    Li, Yiyang.;

  • 作者单位

    Hong Kong Polytechnic (People's Republic of China).;

  • 授予单位 Hong Kong Polytechnic (People's Republic of China).;
  • 学科 Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号