首页> 外文学位 >Theory and numerical simulations of slender-body dynamics in 3D Stokes flow.
【24h】

Theory and numerical simulations of slender-body dynamics in 3D Stokes flow.

机译:3D斯托克斯流中细长体动力学的理论和数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

The hydrodynamics of Stokes flows are very important in the study of rheology, lubrication theory, and micro-organism locomotion and other biophysical systems. In particular, the dynamics of elastic filaments plays an important role in the theories of polymeric liquids, DNA and bacterial supercoiling, and pattern formation in liquid crystal systems. We are particularly interested in the dynamics of a growing, elastic filament immersed in a Stokesian fluid, as a model for the pattern formation seen in experiments of phase transitions of some smectic-A liquid crystals. There, a filament in the smectic phase grows by the intake of material from the fluid, with the "splay" deformation of the liquid crystal filament giving it an elastic response.;Our model combines slender-body theory, and filament elasticity and tensile forces. A general slender-body description was developed by (among others) Keller & Rubinow (K-R, 1976) who used methods of matched asymptotics. Using this as the basis for a dynamical model of smectic filament, Shelley & Ueda found a high-wavenumber instability, and reformulated the asymptotic analysis to remove it. They performed 2-D simulations of the resulting pattern formation. In this thesis, we derive a new model for slender body hydrodynamics from a boundary integral representation, and which we prove is asymptotically equivalent to the original K-R model. This new model is more suitable for simulating multiple, interacting filaments. The numerical methods of Shelley & Ueda were restricted to 2-D, and here are extended to 3-D in a fashion that allows natural implicit treatment of high-order terms. We then simulate the interaction of two filaments in 3-D, where the nonlocal hydrodynamics leads to mutual avoidance.
机译:斯托克斯流的流体动力学在流变学,润滑理论,微生物运动和其他生物物理系统的研究中非常重要。特别地,弹性长丝的动力学在聚合物液体,DNA和细菌超螺旋以及液晶系统中图案形成的理论中起着重要作用。我们对浸入Stokesian流体中的不断增长的弹性长丝的动力学特别感兴趣,这是一些近晶A液晶的相变实验中看到的图案形成的模型。在那里,近晶相中的细丝通过从流体中吸收材料而生长,液晶细丝的“张开”变形赋予其弹性响应。;我们的模型结合了细长体理论,细丝弹性和拉伸力。 (其中包括)Keller&Rubinow(K-R,1976)使用匹配的渐近方法开发了一种一般的细长体描述。 Shelley&Ueda用它作为近晶丝动力学模型的基础,发现了一个高波数不稳定性,并重新设计了渐近分析以消除它。他们对所得图案的形成进行了二维模拟。在本文中,我们从边界积分表示法导出了细长体流体动力学的新模型,并且证明了该模型渐近等效于原始K-R模型。这种新模型更适合于模拟多个相互作用的细丝。 Shelley&Ueda的数值方法仅限于2-D,此处扩展为3-D,其方式允许对高阶项进行自然隐式处理。然后,我们在3-D中模拟两条细丝的相互作用,其中非局部流体动力学导致相互避免。

著录项

  • 作者

    Huang, Yi-Hong.;

  • 作者单位

    New York University.;

  • 授予单位 New York University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号