首页> 美国卫生研究院文献>other >Calculation of Local Water Densities in Biological Systems — A Comparison of Molecular Dynamics Simulations and the 3D-RISM-KH Molecular Theory of Solvation
【2h】

Calculation of Local Water Densities in Biological Systems — A Comparison of Molecular Dynamics Simulations and the 3D-RISM-KH Molecular Theory of Solvation

机译:生物系统局部水密度的计算 - 分子动力学模拟的比较与溶剂化的3D-Rism-KH分子理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Water plays a unique role in all living organisms. Not only is it nature’s ubiquitous solvent, but it also actively takes part in many cellular processes. In particular, the structure and properties of interfacial water near biomolecules like proteins are often related to the function of the respective molecule. It can therefore be highly instructive to study the local water density around solutes in cellular systems, particularly when solvent-mediated forces like the hydrophobic effect are relevant. Computational methods like molecular dynamics (MD) simulations seem well suited to study these systems at the atomic level. However, due to sampling requirements, it is not clear that MD simulations are indeed the method of choice to obtain converged densities at a given level of precision. We here compare the calculation of local water densities with two different methods, MD simulations and the three-dimensional reference interaction site model with the Kovalenko-Hirata closure (3D-RISM-KH). In particular, we investigate the convergence of the local water density to assess the required simulation times for different levels of resolution. Moreover, we provide a quantitative comparison of the densities calculated with MD and with 3D-RISM-KH, and investigate the effect of the choice of the water model for both methods. Our results show that 3D-RISM-KH yields density distributions that are very similar to those from MD up to a 0.5 Å resolution, but for significantly reduced computational cost. The combined use of MD and 3D-RISM-KH emerges as an auspicious perspective for efficient solvent sampling in dynamical systems.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号