首页> 外文学位 >Intrinsic degradation mechanism in tris(8-hydroxyquinolato) aluminum-based organic light emitting devices.
【24h】

Intrinsic degradation mechanism in tris(8-hydroxyquinolato) aluminum-based organic light emitting devices.

机译:三(8-羟基喹啉)铝基有机发光器件的内在降解机理。

获取原文
获取原文并翻译 | 示例

摘要

Intrinsic degradation, which leads to the long-term decrease in the electroluminescence efficiency, has been a major limitation facing the new technology of organic light emitting devices (OLED). Traditionally, degradation has been speculated to be caused by morphological instability of the organic layers, especially the less stable hole transport layer (HTL), or by the formation of deep traps at the hole-injecting contact. These speculations were based on experimental observations showing that doping the organic layers or introducing a buffer layer at the hole-injecting contact can dramatically improve device stability. However, the real causes of OLED degradation remained uncertain.; In this study, the cause of the long-term degradation of OLEDs based on tris(8-hydroxyquinolato) aluminum (A1Q3), the most widely used electroluminescent molecule, is investigated. OLEDs with various structures are studied. Results reveal that the injection of holes into the AlQ3 layer is the dominant factor responsible for device degradation. Cationic AlQ3 species are found to be unstable and their degradation products are fluorescence quenchers that lower the electroluminescence efficiency of OLEDs.; In view of these findings, the effectiveness of stabilizing agents, such as, doping the HTL, introducing a buffer layer at the hole-injecting contact, or using mixed layers of hole and electron transporting molecules, is explained in terms of their role in slowing down the injection of holes into the AlQ 3, which results in a higher electron density and thus a more rapid electron-hole recombination. Therefore, the lifetime of the unstable cationic AlQ3 species is reduced leading to a significant decrease in AlQ 3 degradation and consequently increases device stability. Other earlier observations pertaining to OLED degradation are also addressed. The degradation mechanism is further demonstrated on OLEDs with dual-layer HTL made of materials with different ionization potentials. The important features of a theoretical framework to model OLED degradation are also discussed.
机译:导致电致发光效率长期下降的内在降解已经成为有机发光器件(OLED)的新技术面临的主要限制。传统上,已经认为降解是由于有机层,特别是不稳定的空穴传输层(HTL)的形态不稳定性,或由于在空穴注入接触点处形成深陷阱而引起的。这些推测是基于实验观察得出的,这些实验表明掺杂有机层或在空穴注入接触处引入缓冲层可以显着提高器件的稳定性。然而,OLED降解的真正原因仍然不确定。在这项研究中,研究了基于最广泛使用的电致发光分子三(8-羟基喹啉)铝(A1Q3)的OLED长期降解的原因。研究了具有各种结构的OLED。结果表明,向AlQ 3 层中注入空穴是导致器件性能下降的主要因素。发现阳离子AlQ 3 种类不稳定,其降解产物是荧光猝灭剂,降低了OLED的电致发光效率。鉴于这些发现,就稳定剂的有效性进行了解释,这些稳定剂的有效性包括:掺杂HTL,在空穴注入接触处引入缓冲层或使用空穴和电子传输分子的混合层向下向AlQ 3 中注入空穴,这会导致更高的电子密度,从而使电子-空穴复合更快。因此,不稳定的阳离子AlQ 3 物种的寿命缩短,导致AlQ 3 降解的显着降低,从而增加了器件的稳定性。还解决了其他有关OLED降解的观察。在具有由不同电离电势的材料制成的双层HTL的OLED上进一步证明了降解机理。还讨论了建模OLED退化的理论框架的重要特征。

著录项

  • 作者

    Aziz, Hany Maher.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Materials Science.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 p.968
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号