首页> 外文学位 >Degradation in organic light emitting devices.
【24h】

Degradation in organic light emitting devices.

机译:有机发光器件中的降解。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is about the fundamental causes of degradation in tris(8-Hydroxyquinoline) Aluminum (Alq3)-based organic light emitting diodes (OLEDs). Degradation typically occurs when a current is forced through an insulating material. Since the insulator does not support conduction waves (in its ground state), chemical restructuring must occur to accommodate the current.; OLEDs have many technical advantages over the well known semiconductor-based light emitting diodes (LEDs). OLEDs have quantum efficiencies ∼1% (∼10 times higher than the LEDs), and operational power thresholds ∼.05mW (∼100 lower than the LEDs). OLEDs are preferred in power limited and portable devices; devices such as laptops and displays consume ∼1/4 of the supplied power---any power saving is significant. Other advantages, like better compliance to curved surfaces and ease of fabrication, give the OLEDs an even greater edge over the LEDs.; OLEDs must have at least comparable or better lifetimes to remain attractive. Typical OLEDs last several 100hrs compared to the several 1000hrs for the LEDs. For reliable OLED application, it is necessary to understand the above breakdown mechanism.; In this thesis, we attempt to understand the breakdown by looking at how OLEDs are made, how they work, and when they don't. In the opening sections, we give an overview of OLEDs and LEDs, especially how sustained luminescence is achieved through current circulation. Then in Chapter 2, we look at the basic components in the OLEDs. In Chapter 3 we look at how a hole material (like poly-vinyl carbazole or PVK) establishes an excitonic environment for the sustained luminescence in Alq3. We then approximate how potential is distributed when a simple luminescence system is in operation. In Chapter 4, we look at ways of measuring this distribution via the OLED impedance. Finally in Chapter 5, we look at the OLED stability under light emission conditions via PVK and Alq3 photoemission and photoabsorption spectra.; Implicit throughout our study, we assume that regions of high electric field will likely induce chemical changes and hence breakdown in the OLED. Our electrical measurements suggest that at least 6% of the applied potential may be concentrated at the interfaces. Spectroscopic measurements suggest that chemical reaction does occur there (namely the electrode/Alq3 interface), thus leading to device failure and suggest a course of action to avoid this fate with other OLED systems.
机译:本论文是关于基于三(8-羟基喹啉)铝(Alq3)的有机发光二极管(OLED)退化的根本原因。当迫使电流通过绝缘材料时,通常会发生降解。由于绝缘子不支持传导波(处于基态),因此必须进行化学重组以适应电流。相对于众所周知的基于半导体的发光二极管(LED),OLED具有许多技术优势。 OLED的量子效率约为1%(比LED高约10倍),工作功率阈值约为0.05mW(比LED低约100)。 OLED在功率受限和便携式设备中是首选;诸如笔记本电脑和显示器之类的设备消耗了约1/4的供电功率-任何节电措施都是可观的。其他优点,例如对曲面的顺应性更好,易于制造,使OLED的边缘比LED更大。 OLED必须具有至少可比或更长的使用寿命才能保持吸引力。典型的OLED可持续使用几百小时,而LED需要几千小时。为了可靠的OLED应用,有必要了解上述故障机理。在本文中,我们试图通过研究OLED的制造方式,工作方式以及何时不使用来理解故障。在开头部分,我们概述了OLED和LED,尤其是如何通过电流循环实现持续发光。然后在第2章中,我们将介绍OLED中的基本组件。在第3章中,我们将研究孔材料(例如聚乙烯咔唑或PVK)如何为Alq3中的持续发光建立激子环境。然后,我们估算了一个简单的发光系统在运行时电位的分布情况。在第4章中,我们介绍了通过OLED阻抗测量此分布的方法。最后,在第5章中,我们通过PVK和Alq3的光发射和光吸收光谱考察了发光条件下的OLED稳定性。在我们的整个研究中,我们隐含地认为,高电场区域可能会引起化学变化,从而导致OLED击穿。我们的电学测量表明,至少有6%的施加电势可能集中在界面上。光谱测量表明在那里确实发生了化学反应(即电极/ Alq3界面),从而导致器件故障,并提出了避免与其他OLED系统命运的措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号