首页> 外文学位 >Surface investigations of the atomic layer growth mechanism in aluminum nitride thin film deposition using dimethylethylamine alane and ammonia.
【24h】

Surface investigations of the atomic layer growth mechanism in aluminum nitride thin film deposition using dimethylethylamine alane and ammonia.

机译:使用二甲基乙胺烷和氨气进行氮化铝薄膜沉积时原子层生长机理的表面研究。

获取原文
获取原文并翻译 | 示例

摘要

Aluminum Nitride (AlN), a wide-bandgap semiconductor, has been shown to be an extremely versatile material in semiconductor applications. Our previous efforts in formulating a Metalorganic Chemical Vapor Deposition (MOCVD) processing strategy to deposit AN using Dimethylethylamine Alane (DMEAA; AlH3:N(CH3)2CH2CH3) and ammonia resulted in high quality film growth at low temperatures (∼600 K). Understanding the surface reactions involved is a key step in successfully optimizing a MOCVD process. In this research, we investigated the surface interactions between DMEAA and ammonia leading to the Atomic Layer Growth (ALG) mode on a Si(100) surface using a combination of surface analysis techniques, including Secondary-Ion Mass Spectrometry (SIMS), Temperature-Programmed SIMS (TPSIMS), X-ray Photoelectron Spectroscopy (XPS), and Temperature-Programmed Desorption (TPD).; The exposure of Si(100) to DMEAA at 310 K resulted in self-limiting adsorption of molecular DMEAA and Dimethylethylamine (DMEA). Based on the stoichiometric information from XPS, the molecularly adsorbed DMEA most likely originated from the exposure of a mixed DMEAA-DMEA gas phase rather than a dissociative adsorption process. The DMEAA molecule is susceptible to thermal decomposition, as the aminealane adduct configuration was no longer observed above 490 K. This can impose an upper temperature limit in developing a processing strategy.; The chemical interaction between ammonia and DMEAA resulted in a displacement of DMEA by ammonia. A new surface intermediate (AlHND2) was detected with both SIMS and XPS. This displacement mechanism was rationalized using Hard-Soft-Acid-Base (HSAB) theory. We were able to observe, in a step-by-step fashion, the atomic layer growth process by monitoring the C:N ratios using XPS. The resulting AlN film contained substantial hydrogen but the hydrogen content may be removed thermally. Atomic layer growth mechanism provides an effective means to grow high quality thin films by specific chemical interactions. Employing this approach, we have shown that the carbon contamination from the organic ligands may be controlled stringently.
机译:氮化铝(AlN)是一种宽带隙半导体,在半导体应用中已被证明是一种用途极为广泛的材料。我们先前在制定金属有机化学气相沉积(MOCVD)处理策略以使用二甲基乙胺铝烷(DMEAA; AlH3:N(CH3)2CH2CH3)和氨气沉积氨的过程中,在低温(〜600 K)下产生了高质量的薄膜。了解所涉及的表面反应是成功优化MOCVD工艺的关键步骤。在这项研究中,我们使用表面分析技术的组合,包括二次离子质谱(SIMS),温度-热分析技术,研究了DMEAA与氨在Si(100)表面上导致原子层生长(ALG)模式的表面相互作用。程序化SIMS(TPSIMS),X射线光电子能谱(XPS)和程序升温解吸(TPD)。 Si(100)在310 K下暴露于DMEAA导致分子DMEAA和二甲基乙胺(DMEA)的自限吸附。根据XPS的化学计量信息,分子吸附的DMEA最有可能源自混合DMEAA-DMEA气相的暴露而不是解离吸附过程。 DMEAA分子容易发生热分解,因为在490 K以上不再观察到胺基烷加合物的构型。这可能会在制定加工策略时施加较高的温度限制。氨与DMEAA之间的化学相互作用导致DMEA被氨置换。 SIMS和XPS均检测到新的表面中间体(AlHND2)。使用硬软酸碱(HSAB)理论合理化了这种置换机制。通过使用XPS监控C:N比,我们能够逐步观察原子层的生长过程。所得的AlN膜包含大量的氢,但是氢含量可以被热去除。原子层生长机制提供了一种通过特定化学相互作用生长高质量薄膜的有效手段。使用这种方法,我们已经表明可以严格控制有机配体的碳污染。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号