首页> 外文学位 >Development of low thermal expansion - high conductivity nanocomposites.
【24h】

Development of low thermal expansion - high conductivity nanocomposites.

机译:低热膨胀-高电导率纳米复合材料的发展。

获取原文
获取原文并翻译 | 示例

摘要

Heat dissipation and thermal expansion mismatch are important issues in many electrical and electronics applications. The thermally induced stresses that arise due to poor thermal management and the thermal expansion mismatch among different board materials can lead to premature failure of electronic assemblies. The solution to the heat dissipation and thermal mismatch problems may lie in the development of low thermal expansion, high conductivity materials. Materials such as Cu-Invar, Cu-Mo, and various metal-ceramic composites have successfully been employed in applications such as heat sinks and core constraining layers in circuit boards, but many of these materials have specific limitations such as high processing costs and anisotropic properties.; Homogeneous alloys with intimately mixed components may offer the desired thermal and electrical properties at manufacturing costs much lower than those of the materials currently in use. In addition, homogeneous alloys produced by chemical synthesis and powder processing techniques can offer isotropic thermal, electrical, and mechanical properties, which may be of benefit for future applications where low coefficient of thermal expansion (CTE) and high conductivity are desired.; In this dissertation, novel solution-based synthesis techniques aimed at the production of nanocrystalline alloys and composites are explored. Low thermal expansion, high conductivity materials such as Cu-Fe-Ni, Cu-Mo, Ag-Mo and Ag-Fe-Ni are chemically synthesized, processed, and characterized. In most of the systems investigated, homogeneous alloys of a high conductivity phase and a low CTE phase were produced.; The Fe and Ni in the Cu-Fe-Ni system combined to form a low CTE Invar-like phase, and CTE values for Cu-Invar alloys ranged from 17.3 × 10 −6°C−1 for pure Cu to 1.85 × 10−6°C−1 for Invar. The electrical and thermal conductivity of the Cu-Fe-Ni alloys, however, was low due to the incorporation of Fe and Ni into the Cu-rich phase. Aging heat treatments caused only marginal improvements in the conductivity of the Cu-Fe-Ni alloys.; Cu-Mo, Ag-Mo, and Ag-Fe-Ni alloys exhibited improved conductivity compared to the ternary Cu-Fe-Ni alloys as a result of lower solute contents in the high conductivity (Cu) and (Ag) phases, and the thermal expansion values in these systems were close to rule of mixtures approximations. Metal-aluminum borate ceramic systems were also investigated, but samples with high sintered densities were not obtained due to metal-ceramic phase incompatibility.
机译:散热和热膨胀失配是许多电气和电子应用中的重要问题。由于不良的热管理和不同的板材料之间的热膨胀失配而产生的热应力会导致电子组件过早失效。解决散热和热失配问题的办法可能在于开发低热膨胀,高导电率的材料。 Cu-Invar,Cu-Mo和各种金属陶瓷复合材料已成功用于电路板的散热器和芯约束层等应用中,但其中许多材料都有特定的局限性,例如加工成本高和各向异性属性。具有紧密混合的成分的均质合金可以提供所需的热和电性能,而制造成本远低于目前使用的材料。另外,通过化学合成和粉末加工技术生产的均质合金可以提供各向同性的热,电和机械性能,这对于希望低热膨胀系数(CTE)和高导电率的未来应用可能是有益的。本论文探索了以溶液为基础的新型合成技术,旨在制备纳米晶合金和复合材料。化学合成,加工和表征低热膨胀,高电导率的材料,例如Cu-Fe-Ni,Cu-Mo,Ag-Mo和Ag-Fe-Ni。在大多数研究的系统中,生产出了高电导率相和低CTE相的均质合金。 Cu-Fe-Ni系统中的Fe和Ni结合形成低CTE Invar类相,Cu-Invar合金的CTE值范围为17.3×10 -6 °C 纯Cu的-1 对殷钢为1.85×10 -6 °C -1 。然而,由于将Fe和Ni掺入富Cu相中,因此Cu-Fe-Ni合金的电导率和导热率较低。时效热处理仅使Cu-Fe-Ni合金的电导率略有提高。与三元Cu-Fe-Ni合金相比,Cu-Mo,Ag-Mo和Ag-Fe-Ni合金显示出更高的电导率,这是由于在高电导率(Cu)和(Ag)相中溶质含量较低,并且这些系统中的热膨胀值接近混合物近似法则。还研究了金属铝硼酸盐陶瓷体系,但由于金属陶瓷相的不相容性,未能获得具有高烧结密度的样品。

著录项

  • 作者

    Stolk, Jonathan Douglas.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号