首页> 外文学位 >Chemical vapor deposition of amorphous tungsten nitride for applications in ultra-large scale interconnect technologies.
【24h】

Chemical vapor deposition of amorphous tungsten nitride for applications in ultra-large scale interconnect technologies.

机译:用于超大规模互连技术的非晶态氮化钨的化学气相沉积。

获取原文
获取原文并翻译 | 示例

摘要

Increasing demands on computer chip technology require exploration of novel materials and deposition techniques. The driving need to reduce device dimensions without increasing device delay time has forced a move towards copper interconnects. Copper interconnects require an encapsulating barrier layer to prevent diffusion into the dielectric layer, as well as a passivation layer to protect against oxidation. One potential material for the barrier layer is tungsten nitride (WNx). Tungsten nitride is expected to perform well as a barrier because of its refractory nature and excellent thermal, chemical, and mechanical properties. In addition, it can be deposited in amorphous form. Amorphous materials have no grain boundaries, thereby making grain boundary diffusion, a fast path diffusion mechanism, impossible.; In this work, a chemical vapor deposition (CVD) process was developed for the deposition of tungsten nitride. CVD was selected because it has the potential to deposit highly conformal film. High conformality is critical in a barrier layer in order to ensure viable coverage at the bottom and sides of device structures without sacrificing critical space that would be better used by the copper metal. In this manner, the total resistivity of the interconnect is minimized. The CVD WNx process was systematically optimized for film conformality, resistivity and growth rate. This was achieved by thoroughly examining film nucleation and growth characteristics, and analyzing resulting film properties.; Adhesion of copper to the CVD films was qualified using stud pull tests, while X-ray diffraction was implemented to determine crystallization temperature of the amorphous phase. Additionally, diffusion barrier properties of the CVD tungsten nitride were assessed using sputter deposited copper, and compared to those of sputter deposited tungsten nitride. Thermally activated barrier failure was studied as a function of barrier thickness using Rutherford backscattering spectroscopy and Secco etch studies to establish baseline metrics for copper diffusion into the barrier and silicon substrate. For this purpose, failure temperatures of CVD and sputtered tungsten nitride were compared and contrasted, and possible diffusion mechanisms were discussed.
机译:对计算机芯片技术的需求不断增加,需要探索新颖的材料和沉积技术。在不增加器件延迟时间的情况下,不断减小器件尺寸的需求迫使人们转向了铜互连。铜互连需要封装阻挡层以防止扩散到介电层中,还需要钝化层以防止氧化。势垒层的一种潜在材料是氮化钨(WNx)。氮化钨由于其耐火性质和出色的热,化学和机械性能而有望作为阻挡层。另外,它可以无定形形式沉积。非晶材料没有晶界,因此不可能进行晶界扩散,这种快速的路径扩散机理。在这项工作中,开发了化学气相沉积(CVD)工艺来沉积氮化钨。选择CVD是因为它具有沉积高保形膜的潜力。为了确保在器件结构的底部和侧面实现可行的覆盖而不会牺牲铜金属会更好使用的关键空间,高共形性对于阻挡层至关重要。以这种方式,互连的总电阻率被最小化。 CVD WNx工艺已针对膜的保形性,电阻率和生长速率进行了系统优化。这是通过彻底检查薄膜的成核和生长特性,并分析所得的薄膜性能来实现的。使用螺柱拉力测试对铜与CVD膜的附着力进行鉴定,同时进行X射线衍射以确定非晶相的结晶温度。另外,使用溅射沉积的铜评估CVD氮化钨的扩散阻挡性能,并将其与溅射沉积的氮化钨的扩散阻挡性能进行比较。使用Rutherford背向散射光谱法和Secco蚀刻研究,研究了热激活的阻挡层失效与阻挡层厚度的关系,以建立铜扩散到阻挡层和硅衬底中的基准度量。为此,比较并对比了CVD和溅射氮化钨的破坏温度,并讨论了可能的扩散机理。

著录项

  • 作者

    Kelsey, Jean E.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号