首页> 外文学位 >Autohydrogenotrophic denitrification of drinking water using a hollow-fiber membrane biofilm reactor.
【24h】

Autohydrogenotrophic denitrification of drinking water using a hollow-fiber membrane biofilm reactor.

机译:使用中空纤维膜生物膜反应器对饮用水进行自氢营养脱氮。

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on nitrate removal from drinking water by a novel hollow-fiber membrane biofilm reactor using hydrogen as the electron-donor substrate. With the biofilm growing directly on the surface of the hollow fiber, the hydrogen-transfer efficiency to the biofilm was virtually 100%, and the biofilm achieved a high nitrate flux without the need for a high H 2 concentration in the bulk liquid. These factors dramatically reduce the size of the reactor and loss of hydrogen in the effluent and to the atmosphere, making the hollow-fiber membrane biofilm reactor an economically favorable and safe process.; Short-term pseudo-steady-state experiments achieved a range of maximum nitrate fluxes between 0.042 and 0.16 mg N/cm2-d, which correspond to maximum H2 utilization fluxes between 0.014 and 0.055 mg H 2/cm2-d with PH2 between 0.2 and 0.56 atm. The H2 utilization fluxes in this study are significantly higher than the hydrogen fluxes in previously published autohydrogenotrophic denitrification studies. The experimentally determined fluxes and concentrations for hydrogen, nitrate, and nitrite can be used as practical guidelines for system design.; The optimum pH for denitrification was between 7.7 and 8.6, with the maximum efficiency at pH 8.4. Increasing the pH over 9 caused a decrease in nitrate-removal efficiency and an increase of nitrite accumulation. Precipitation of hardness occurred in all runs. Denitrification increased alkalinity and elevated the pH significantly when the systems contained a low buffer intensity.; Dissolved organic carbon was greater in the effluent than in the influent, with 22% of the effluent DOC being biodegradable. Thus, the denitrification reactor should be followed by a process that removes biological instability.; Modeling analyses defined the conditions for which H2 or NO 3-- was the limiting substrate. The analyses also showed that high hydrogen pressures dramatically increased the maximum specific nitrate and nitrite reduction rates, which suggests an up-regulation of nitrate and nitrite reductases by a higher H2 concentration in the biofilm.
机译:这项研究的重点是通过使用氢作为电子给体底物的新型中空纤维膜生物膜反应器从饮用水中去除硝酸盐。随着生物膜直接在中空纤维表面上生长,向生物膜的氢转移效率实际上为100%,并且生物膜实现了高硝酸盐通量,而无需在散装液体中实现高H 2浓度。这些因素极大地减小了反应器的尺寸,并减少了废水中和向大气中的氢的损失,使中空纤维膜生物膜反应器成为经济上有利且安全的方法。短期拟稳态实验获得的最大硝酸盐通量介于0.042和0.16 mg N / cm2-d之间,这对应于最大的H2利用通量介于0.014和0.055 mg H 2 / cm2-d之间,而PH2在0.2和0.2之间。 0.56大气压。在这项研究中,H2利用通量明显高于以前发表的自氢营养反硝化研究中的氢通量。实验确定的氢,硝酸盐和亚硝酸盐的通量和浓度可以用作系统设计的实用指南。反硝化的最佳pH在7.7和8.6之间,在pH 8.4时具有最大效率。将pH值提高到9以上会导致硝酸盐去除效率下降,亚硝酸盐积累增加。所有运行中都会出现硬度沉淀。当系统的缓冲液强度较低时,反硝化作用会增加碱度并显着提高pH值。废水中的溶解有机碳大于废水中的,其中22%的废水DOC是可生物降解的。因此,反硝化反应器之后应进行消除生物不稳定性的过程。建模分析定义了以H2或NO 3--作为限制底物的条件。分析还表明,高氢气压力显着提高了最大比硝酸盐和亚硝酸盐还原速率,这表明生物膜中较高的H2浓度会上调硝酸盐和亚硝酸盐还原酶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号