首页> 外文学位 >Analytical and numerical optimization of an electronically scanned circular array.
【24h】

Analytical and numerical optimization of an electronically scanned circular array.

机译:电子扫描圆形阵列的分析和数值优化。

获取原文
获取原文并翻译 | 示例

摘要

A combined analytical and empirical optimization of an ultra high-frequency (UHF) circular array is presented in this work.;A parameter study of the circular array follows. (Chapter 5). The study demonstrates that the number of array elements is the primary factor limiting the ability to minimize the beamwidth (in the plane of the array) and sidelobe levels.;Utilizing the results from Part 1, Part 2 discusses the optimization strategy of the element and the array. Two moment method codes---one of which works directly with a quasi-Newton optimizer---were used to complete the physical design. A complete array was fabricated and tested. Two critically important concepts are presented here. The first is that assuming the pre-1983 IEEE definition of gain is adopted, referred to throughout the thesis as system gain, then the voltage excitation that maximizes the system gain for an array of arbitrary geometry is simply proportional to the field contributions at a given beam angle from the respective elements. The second concept is that despite strong inter-element coupling, an array with a desirable set of element characteristics can be created by performing an optimization on an isolated element. This is of significance because the optimization of the electromagnetic model of the array can be prohibitive, for the sheer number of unknowns present.;Part 3 develops the appropriate beamforming methods. Several techniques are used. The first, based upon a linear least-squares method (LLS), is suitable for reception (Chapter 4). Here it is shown that the LLS method can be used to maximize the directivity. Along this line, the effect that the so-called target null-to-null beamwidth has on the array efficiency (and consequent system gain) is noted and discussed. Both weighted and unweighted versions are considered. With weighting, sidelobes of -40 dB are demonstrated. For transmission, a new means of placing a taper across the aperture while simultaneously operating all amplifiers at full power is introduced. An eight-port vector combiner, which forms the basis of this capability, is explained. The sequential quadratic programming method is employed to permit non-linear array weighting constraints (Chapter 7). Non-linear constraints are needed to maximize the effectiveness of the combiner. This approach to a tapered transmit beam affords the full system gain of a uniform excitation (or more), while reducing peak sidelobes by approximately 11 dB. (Abstract shortened by UMI.)
机译:本文对超高频(UHF)圆形阵列进行了分析和经验优化相结合的研究。 (第5章)。研究表明,阵列元件的数量是限制最小化波束宽度(在阵列平面内)和旁瓣电平的能力的主要因素。;利用第1部分的结果,第2部分讨论了元件的优化策略,以及数组。两种矩量方法代码(其中一种直接与准牛顿优化器配合使用)用于完成物理设计。制作并测试了完整的阵列。这里介绍了两个至关重要的概念。首先是,假设采用1983年以前的IEEE增益定义,在整个论文中都称为系统增益,那么对于给定几何形状的阵列,使系统增益最大化的电压激励与给定磁场的贡献成正比。来自各个元件的光束角。第二个概念是,尽管元素间耦合很强,但可以通过对隔离元素进行优化来创建具有所需元素特征集的阵列。这是重要的,因为对于存在的大量未知数,阵列电磁模型的优化可能会令人望而却步。第三部分,开发了合适​​的波束成形方法。使用了几种技术。第一种基于线性最小二乘法(LLS),适用于接收(第4章)。此处显示了LLS方法可用于最大化方向性。沿着这条路线,将记录和讨论所谓的目标零位到零位波束宽度对阵列效率(以及随之而来的系统增益)的影响。加权版本和未加权版本都被考虑。通过加权,演示了-40 dB的旁瓣。为了进行传输,引入了一种新的方式,即在整个孔径上同时使锥形变细,同时使所有放大器全功率工作。解释了构成此功能基础的八端口矢量组合器。顺序二次编程方法用于允许非线性数组加权约束(第7章)。需要非线性约束来最大化组合器的效率。这种对锥形发射波束的方法可提供均匀激励(或更多激励)的整个系统增益,同时将峰值旁瓣降低约11 dB。 (摘要由UMI缩短。)

著录项

  • 作者

    Stamm, James Matthew.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号