首页> 外文学位 >Device design and transport issues in nitride and ferroelectric heterostructure devices.
【24h】

Device design and transport issues in nitride and ferroelectric heterostructure devices.

机译:氮化物和铁电异质结构器件中的器件设计和传输问题。

获取原文
获取原文并翻译 | 示例

摘要

The silicon-silicon dioxide heterostructure has sustained microelectronics for over 30 years. However, as the device channel length reaches 50 nm, this heterostructure will run into serious problems such as gate tunneling leakage, doping fluctuation and increasing junction resistance. This opens opportunities for other material systems.; in this dissertation we explore electronic properties and device potential of polar semiconductors. They are nitride compounds (e.g. GaN, AlGaN) and ferroelectric materials (e.g. BST). These materials have the property that there is a net displacement of the cation and anion sublattice leading to a polarization in the material. With proper device design its polar charge can be exploited and under right conditions be used to replace dopants. Additionally one can use heterostructure physics to produce high performance electronic and optoelectronic devices.; Studies on charge control and mobility in GaN/AlGaN HEMTs grown by MBE and MOCVD are presented. The sheet charge density in the device channel is found to be controlled by spontaneous polarization, piezoelectric effect and barrier thickness, and sheet charge as high as 1013 cm −1 can be introduced without doping. Through mobility study we see that interface disorder of the order of one monolayer or more reduces the mobility in the channel considerably. We also see that for low lying electronic states localization occurs in samples with high Al content in the barrier. This is because of the high carrier mass and the very high interface fields that arise. Two-dimensional transport in AlGaN/GaN is examined against AlGaAs/GaAs by using an ensemble Monte Carlo approach. We find that for small bias conditions, GaAs based devices show a shorter transit time. However, when the field increases the GaN channel has a shorter transit time. This difference can be traced to the velocity field relations in the two materials. Our results show that for low power applications GaAs based devices have superior high frequency performance while at large bias values AlGaN/GaN devices have superior performance which has been demonstrated in the experiments.; For the BST MOSFET, results on a one-dimensional charge control model and estimation of gate tunneling probability are presented. The modulation charge, tunneling probability and the band profile are examined as a function of spontaneous charges, and applied voltage. In comparison to the conventional MOS the new structure has almost five times more induced-charge density and the tunneling probability is greatly suppressed.
机译:硅-二氧化硅异质结构已使微电子学持续了30多年。但是,随着器件沟道长度达到50 nm,这种异质结构将遇到严重的问题,例如栅极隧穿泄漏,掺杂波动和结电阻增大。这为其他材料系统打开了机会。在本文中,我们探讨了极性半导体的电子特性和器件电势。它们是氮化物化合物(例如GaN,AlGaN)和铁电材料(例如BST)。这些材料具有阳离子和阴离子亚晶格的净位移导致材料极化的特性。通过适当的器件设计,可以利用其极性电荷,并在适当的条件下用来替代掺杂剂。另外,可以使用异质结构物理学来生产高性能的电子和光电设备。提出了通过MBE和MOCVD生长的GaN / AlGaN HEMT中的电荷控制和迁移率的研究。发现器件通道中的薄板电荷密度受自发极化,压电效应和势垒厚度的控制,并且薄板电荷可高达10 13 cm -1 没有掺杂就引入。通过迁移率研究,我们发现,一层或多层以上的界面紊乱会大大降低通道中的迁移率。我们还看到,对于低位电子态,定位发生在势垒中具有高Al含量的样品中。这是因为产生了很高的载流子质量和很高的界面场。通过使用集成蒙特卡洛方法,针对AlGaAs / GaAs检验了AlGaN / GaN中的二维传输。我们发现,在较小的偏置条件下,基于GaAs的器件的传输时间较短。然而,当场增加时,GaN沟道具有较短的渡越时间。这种差异可以追溯到两种材料中的速度场关系。我们的结果表明,在低功率应用中,基于GaAs的器件具有出色的高频性能,而在较大的偏置值下,AlGaN / GaN器件具有出色的性能,这已在实验中得到证明。对于BST MOSFET,提出了一维电荷控制模型的结果以及栅极隧穿概率的估计。根据自发电荷和施加电压来检查调制电荷,隧穿概率和能带分布。与传统的MOS相比,新结构的感应电荷密度几乎高出五倍,并且大大降低了隧穿几率。

著录项

  • 作者

    Zhang, Yifei.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics Condensed Matter.; Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号