首页> 外文学位 >Higher-order boundary element methods for unsteady convective transport phenomena.
【24h】

Higher-order boundary element methods for unsteady convective transport phenomena.

机译:非稳态对流输运现象的高阶边界元方法。

获取原文
获取原文并翻译 | 示例

摘要

Despite the significant number of publications on boundary element methods (BEM) for time-dependent problems of heat diffusion and convective diffusion, there still remain issues that need to be addressed, most importantly accuracy of the numerical modelling. Although very precise for steady-state problems, the common boundary element methods applied to transient problems do not yield highly accurate numerical solutions.;First, this work investigates the reasons that prohibit achievement of a high level of accuracy for transient diffusion problems with continuous temperature and bounded heat flux solutions. We propose higher-order time interpolation functions, including quadratic and quartic approximations. We show that the use of higher-order time functions greatly reduces the numerical error concentrated in the comer regions, and results in very good uniformity of the flux and temperature distributions along the boundaries for problems where uniform distributions are expected.;In order to highlight the importance of proper resolution both in time and space for the transient problems, we consider one- and two-dimensional formulations. For the two-dimensional case, single- and poly-region formulations are utilized. While the latter approach employs the hexagonal mesh introduced by Grigoriev and Dargush (1999) for steady viscous flows at high Reynolds numbers, the former approach makes use of both a hexagonal mesh and a regular mesh of rectangles throughout the volume.;A finite-flux boundary element method (BEM) for transient heat diffusion phenomena is extended to problems involving instantaneous rise of temperature on a portion of the boundary. The new boundary element formulation involves the use of an infinite flux function in order to properly capture the singular response of the flux. It is shown that the conventional finite flux BEM formulation, as well as a commercial FEM code, results in a large first time step numerical error that cannot be reduced by mesh or time step refinement.;Higher-order boundary element methods for the time-dependent convective diffusion problems are presented. The time-dependent convective diffusion free-space fundamental solutions originally proposed by Carslaw and Jaeger (1957) are used to obtain the boundary integral formulation. A complete set of closed form time integrals for the one-dimensional formulation are presented here for the first time in the literature. Solutions are obtained for four different problems of unsteady convection-diffusion, including shock wave propagation. (Abstract shortened by UMI.).
机译:尽管有关热扩散和对流扩散的时间相关问题的边界元方法(BEM)的出版物很多,但仍然存在需要解决的问题,最重要的是数值建模的准确性。尽管对于稳态问题非常精确,但用于瞬态问题的通用边界元方法并不能产生高度精确的数值解。;首先,这项工作研究了在连续温度下瞬态扩散问题阻碍实现高精度水平的原因和有限的热通量解决方案。我们提出了高阶时间插值函数,包括二次和四次逼近。我们表明,使用高阶时间函数可以极大地减少集中在拐角区域的数值误差,并导致沿边界的通量和温度分布具有非常好的均匀性,以应对预期均匀分布的问题。在时间和空间上适当解决瞬态问题的重要性,我们考虑一维和二维公式。对于二维情况,使用单区域和多区域公式。后一种方法采用了由Grigoriev和Dargush(1999)引入的六角形网格来在高雷诺数下获得稳定的粘性流动,而前一种方法则在整个体积中都使用了六角形网格和矩形的规则网格。用于瞬态热扩散现象的边界元方法(BEM)扩展到涉及边界的一部分温度瞬时升高的问题。新的边界元素公式涉及使用无限磁通函数,以便正确捕获磁通的奇异响应。结果表明,传统的有限通量BEM公式以及商业化的FEM代码会导致较大的第一时间步数值误差,无法通过网格或时间步细化来减小。;时间的高阶边界元方法提出了依赖的对流扩散问题。由Carslaw和Jaeger(1957)最初提出的时变对流扩散自由空间基本解用于获得边界积分公式。一维公式的一整套封闭形式时间积分在本文中首次出现。对于不稳定对流扩散的四个不同问题(包括冲击波传播)获得了解决方案。 (摘要由UMI缩短。)。

著录项

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Civil.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号