首页> 外文学位 >On systems biology and the pathway analysis of metabolic networks.
【24h】

On systems biology and the pathway analysis of metabolic networks.

机译:关于系统生物学和代谢网络的路径分析。

获取原文
获取原文并翻译 | 示例

摘要

The rise of genomics, and development of technological advances for the high-throughput study of genome-scale cell activity, is leading to a shift in thinking toward an integrated holistic view of living systems. The elucidation of whole-cell metabolic networks necessitates the development of integrative methods to analyze, interpret, and predict the systemic properties of cellular metabolism. A general constraint-based approach for the comprehensive modeling of metabolic systems is developed and advocated as a paradigm shift in attempting to understand cellular metabolism and the metabolic genotype-phenotype relationship. The consideration of stoichiometric, thermodynamic, and capacity constraints leads to the quantitative assessment of metabolic capabilities and fitness. Utilizing the mathematics of convex analysis, the range of feasible flux distributions, which a network can display, are confined to the steady-state flux cone. This solution space is spanned by a unique set of systemically independent biochemical pathways, termed extreme pathways, based on stoichiometry and limited thermodynamics. These pathways represent the edges of the steady-state flux cone and can be used to represent any flux distribution achievable by the network. These pathways and the constraints-based approach serve to redefine the notion of a metabolic pathway in the context of systemic function, and allow the ability to quantitatively assess metabolic capabilities and fitness. Through the introduction of balanced network demands and capacity constraints, optimal flux distributions can be predicted and interpreted from a pathway-oriented perspective allowing for a deeper understanding of shifts in metabolic resource allocation. These theoretical developments are applied to investigate the metabolic production capabilities and performance of the human red blood cell and Escherichia coli central metabolism, along with Haemphilus influenzae and Helicobacter pylori two bacterial human pathogens whose complete metabolic networks are constructed from genomic, biochemical, and physiological data. From the analysis insight is gained into the structure of the networks, their general fitness, and pathway utilization under changing environmental and genetic conditions. As biology moves into the information age there exists a critical need for integrated theoretical/experimental approaches to study living systems, which is anticipated to place in silico predictive biology as a central component in the advancement of medical and industrial biotechnology.
机译:基因组学的兴起,以及对基因组规模的细胞活性进行高通量研究的技术进步的发展,正导致思维方式转向对生命系统的综合整体看法。对全细胞代谢网络的阐明,需要发展综合方法来分析,解释和预测细胞代谢的系统特性。开发了一种通用的基于约束的代谢系统综合建模方法,并将其作为尝试理解细胞代谢和代谢基因型-表型关系的范式转变。对化学计量,热力学和容量限制的考虑导致对代谢容量和适应性的定量评估。利用凸分析的数学方法,网络可以显示的可行通量分布范围被限制在稳态通量锥内。该解决方案空间由一组独特的系统独立的生化途径跨越,这些途径基于化学计量和有限的热力学,称为极端途径。这些路径代表稳态通量锥的边缘,可用于代表网络可实现的任何通量分布。这些途径和基于约束的方法用于在系统功能的背景下重新定义代谢途径的概念,并允许定量评估代谢能力和适应性的能力。通过引入平衡的网络需求和容量限制,可以从面向路径的角度预测和解释最佳通量分布,从而可以更深入地了解代谢资源分配的变化。这些理论发展被用于研究人类红细胞和大肠杆菌中央代谢以及流感嗜血杆菌和幽门螺杆菌这两种细菌人类病原体的代谢生产能力和性能,这两种细菌是由基因组,生化和生理数据构成的完整代谢网络。通过分析,可以洞悉网络的结构,总体适应性以及在变化的环境和遗传条件下的路径利用。随着生物学进入信息时代,迫切需要集成的理论/实验方法来研究生命系统,预计这将使计算机预测生物学成为医学和工业生物技术发展的重要组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号