首页> 外文学位 >Genetic and biologic characterization of a family of inositol polyphosphate 5-phosphatases in Saccharomyces cerevisiae.
【24h】

Genetic and biologic characterization of a family of inositol polyphosphate 5-phosphatases in Saccharomyces cerevisiae.

机译:酿酒酵母中肌醇多磷酸5-磷酸酶家族的遗传和生物学特性。

获取原文
获取原文并翻译 | 示例

摘要

Phosphoinositides (PIs), important regulators of vesicle trafficking, the actin cytoskeleton, and proliferation, are modulated by the inositol polyphosphate 5-phosphatases (5-ptases). Saccharomyces cerevisiae has four 5-ptases encoded by INP51, INP52, INP53, and INP54 . This redundancy indicates the importance of these enzymes, but invites the question of why cells require multiple enzymes with the same activity. All four enzymes have 5-ptase activity that hydrolyzes PI(4,5)P2 to PI(4)P, while both Inp52p and Inp53p, as well as yeast Sac1p, also contain a SAC1-like domain with separate polyphosphoinositide phosphatase (PPIPase) activity that dephosphorylates PI(3)P, PI(4)P and PI(3,5)P2 all to PI. While deletion of individual INP5s is not lethal, double knockouts are growth inhibited, and simultaneous disruption of INP51, INP52, and INP53 results in inviability. Electron micrographs of inp5 mutants reveal plasma membrane invaginations, abnormal vesicular structures, and unusually thick cell walls. Complementation studies indicate that both the 5-ptase and the PPIPase domains found in these enzymes are crucial for cell viability, suggesting that the deregulation of the phosphoinositide signaling pathway is detrimental to the cell. Genetic studies revealed an interaction between Inp51p and Sac1p, suggesting that although these proteins exhibit different enzymatic activity, they may function in parallel pathways. A multi-copy suppression screen performed on the inp51 inp52 inp53 triple mutant to identify processes or proteins regulated by the 5-ptases identified SNAREs involved in secretion and regulators of MAP kinases implicated in cell wall biosynthesis. A putative ARF GAP that may modulate PI metabolism was also found. Additionally, the disruption of INP51 is able to overcome the polarized secretion defect exhibited by a CDC42 temperature sensitive mutant. These results indicate that at least one function of the Inp5p proteins is to regulate cellular secretion. Localization of a PH domain that specifically binds PI(4,5)P2 in various inp5 mutants demonstrates that distinct pools of PI(4,5)P2 exist in cells, providing some evidence that each 5-ptase functions in a different cellular compartment. These results provide strong evidence to suggest that the 5-ptases of S. cerevisiae perform discrete functions within the cell, and that these enzymes most likely regulate distinct steps involved in vesicle trafficking.
机译:磷酸肌醇(PIs)是囊泡运输,肌动蛋白细胞骨架和增殖的重要调节剂,是由肌醇多磷酸5-磷酸酶(5-磷酸酶)调节的。酿酒酵母具有四个由INP51,INP52,INP53和INP54编码的5-酶。这种冗余表明了这些酶的重要性,但引发了一个问题,为什么细胞需要具有相同活性的多种酶。所有这四种酶均具有5-ptase活性,可将PI(4,5)P2水解为PI(4)P,而Inp52p和Inp53p以及酵母Sac1p也都包含类似SAC1的结构域,并带有独立的多磷酸肌醇磷酸酶(PPIPase)将PI(3)P,PI(4)P和PI(3,5)P2全部磷酸化为PI的活性。尽管单个INP5的缺失不是致命的,但双重敲除被抑制了生长,同时破坏INP51,INP52和INP53导致了生存。 inp5突变体的电子显微照片显示质膜内陷,异常的囊泡结构和异常厚的细胞壁。补充研究表明,在这些酶中发现的5-ptase和PPIPase结构域对于细胞活力至关重要,这表明磷酸肌醇信号通路的失调对细胞有害。遗传研究揭示了Inp51p和Sac1p之间的相互作用,这表明尽管这些蛋白质表现出不同的酶促活性,但它们可能在平行途径中发挥作用。在inp51 inp52 inp53三重突变体上进行的多拷贝抑制筛选,以鉴定由5酶调控的过程或蛋白质,这些酶鉴定了与细胞壁生物合成有关的MAP激酶的分泌和调节剂所涉及的SNARE。还发现可能调节PI代谢的ARF GAP。另外,INP51的破坏能够克服CDC42温度敏感突变体表现出的极化分泌缺陷。这些结果表明,Inp5p蛋白的至少一种功能是调节细胞分泌。在各种inp5突变体中与PI(4,5)P2特异性结合的PH域的定位表明细胞中存在PI(4,5)P2的不同库,提供了一些证据,表明每个5-ptase在不同的细胞区室中起作用。这些结果提供了强有力的证据,表明酿酒酵母的5-酶在细胞内执行离散功能,并且这些酶很可能调节囊泡运输中涉及的不同步骤。

著录项

  • 作者

    Stoltz, Leslie Erin.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Biology Molecular.;Biology Cell.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号