首页> 外文学位 >The role of upstream lakes in determining downstream severe lake-effect snowstorms.
【24h】

The role of upstream lakes in determining downstream severe lake-effect snowstorms.

机译:上游湖泊在确定下游严重湖效应暴风雪中的作用。

获取原文
获取原文并翻译 | 示例

摘要

A severe lake-effect snowstorm on 25–26 December 1993 was successfully modeled using the Penn State/NCAR MM5 model at 7 km grid resolution. Another simulation performed with Lake Michigan removed from the domain resulted in a two-thirds reduction in snowfall maxima, reduced vertical ascent (50% smaller maxima), and cloud depth (50–100 mb in vertical depth) upwind and over Lake Erie. The downstream snowband shifted northward and eastward as a consequence of stronger background flow and weaker shoreline convergence in the removed case. An idealized model of two-lake interaction was devised using an alternative set of MM5 preprocesses, allowing the definition of simple boundary conditions subject to a single thermal profile applied across the domain. Fixed background winds, temperature, and humidity were then allowed to interact with a surface boundary composed of flat land and elliptical lakes. In the absence of orography and synoptic-scale transients, model responses could be attributed directly to mesoscale forcing via the thermal and frictional disparity between land and water. Results showed that multi-lake interaction did occur once heat and moisture advected from the upstream to downstream lakes (12–18 hours under 10 m s–1 background flow). When background conditions known to produce strong lake-effect snowband development are imposed, the heat and moisture plume from the upstream lake warmed the CIBL between the two lakes by 4– 6°C, and elevated cloud liquid water by amounts exceeding 0.20 g kg–1. The dynamical adjustment resulting from the upstream surface-forcing lowered pressure by 1.5–2.0 mb downwind of the upstream lake; produced a mesoscale low pressure with flow reversal along the northern one-third of the upstream lake; and accelerated flow downwind of the lower one-third of this lake. Removal of turbulent heat fluxes from the upstream lake demonstrated that sensible heating is directly responsible for the establishment and maintenance of the upstream local pressure perturbation through dynamic adjustment or thermal troughing. Suppression of moisture availability or latent heat flux from the upstream lake greatly reduces precipitation amounts and areal extents over the downstream lake, much more so than removal of both latent and sensible heat fluxes, or removal of the lake itself.
机译:使用Penn State / NCAR MM5模型以7 km的网格分辨率成功地模拟了1993年12月25日至26日发生的严重湖面暴风雪。在密歇根湖撤离区域的情况下进行的另一次模拟导致降雪最大值减少了三分之二,垂直上升(最大值降低了50%)以及顺风和伊利湖上方的云层深度(垂直深度为50–100 mb)减少了。下游雪带向北和向东移动,这是由于在这种情况下背景流更强,海岸线收敛性较弱的结果。使用另一组MM5预处理程序设计了一个理想的两湖相互作用模型,该模型允许定义简单的边界条件,但要遵循跨域应用的单个热分布图。然后使固定的背景风,温度和湿度与由平坦土地和椭圆形湖泊组成的表面边界相互作用。在没有地形学和天气尺度瞬变的情况下,模型响应可以直接归因于土地和水之间的热和摩擦差异造成的中尺度强迫。结果表明,当热量和水分从上游湖泊流向下游湖泊时(在10 m s –1 背景流量下12–18小时),确实发生了多湖相互作用。当施加已知会产生强大湖影响雪带发展的背景条件时,上游湖泊的热量和湿气羽流使两个湖泊之间的CIBL变暖了4–6°C,云状液态水的量升高了0.20 g kg < super> –1 。上游表面强迫引起的动力调节使上游湖泊顺风向下游降低了1.5–2.0 mb。在上游湖泊的北部三分之一处产生了中尺度的低压,且流量逆转;并加速了该湖下三分之一的顺风。从上游湖泊中去除湍流的热通量表明,显热是通过动态调节或热槽直接建立和维持上游局部压力扰动的原因。抑制上游湖泊的水分供应或潜热通量大大减少了下游湖泊的降水量和面积,这远比消除潜热通量和感热通量或消除湖泊本身要多。

著录项

  • 作者

    Rose, Bruce L., Jr.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Environmental Sciences.; Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学基础理论;大气科学(气象学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号