首页> 外文学位 >Molecular mechanism of sulfated carbohydrate recognition: Structural and biochemical studies of the cysteine-rich domain of mannose receptor.
【24h】

Molecular mechanism of sulfated carbohydrate recognition: Structural and biochemical studies of the cysteine-rich domain of mannose receptor.

机译:硫酸化碳水化合物识别的分子机制:富含半胱氨酸的甘露糖受体的结构和生化研究。

获取原文
获取原文并翻译 | 示例

摘要

Mannose receptor (MR) is widely expressed on macrophages, immature dendritic cells, and a variety of epithelial and endothelial cells. It is a 180 kD type I transmembrane receptor whose extracellular region consists of three parts: the amino terminal cysteine-rich domain (Cys-MR); a fibronectin type II-like domain; and a series of eight tandem C-type lectin carbohydrate recognition domains (CRDs). Two portions of MR have distinct carbohydrate recognition properties: Cys-MR recognizes sulfated carbohydrates and the tandem CRD region binds terminal mannose, fucose, and N-acetyl-glucosamine (GlcNAc). The dual carbohydrate binding specificity allows MR to interact with sulfated and non-sulfated polysaccharide chains, and thereby facilitating the involvement of MR in immunological and physiological processes. The immunological functions of MR include antigen capturing (through binding non-sulfated carbohydrates) and antigen targeting (through binding sulfated carbohydrates), and the physiological roles include rapid clearance of circulatory luteinizing hormone (LH), which bears polysaccharide chains terminating with sulfated and non-sulfated carbohydrates.; We have crystallized and determined the X-ray structures of unliganded Cys-MR (2.0 Å) and Cys-MR complexed with different ligands, including Hepes (1.7 Å), 4SO4-N-Acetylgalactosamine (4SO4-GalNAc; 2.2 Å), 3SO4-Lewisx (2.2 Å), 3SO4-Lewis a (1.9 Å), and 6SO4-GalNAc (2.5 Å). The overall structure of Cys-MR consists of 12 anti-parallel β-strands arranged in three lobes with approximate three fold internal symmetry. The structure contains three disulfide bonds, formed by the six cysteines in the Cys-MR sequence. The ligand-binding site is located in a neutral pocket within the third lobe, in which the sulfate group of ligand is buried. Our results show that optimal binding is achieved by a carbohydrate ligand with a sulfate group that anchors the ligand by forming numerous hydrogen bonds and a sugar ring that makes ring-stacking interactions with Trp 117 of Cys-MR. Using a fluorescence-based assay, we characterized the binding affinities between Cys-MR and its ligands, and rationalized the derived affinities based upon the crystal structures. These studies reveal the mechanism of sulfated carbohydrate recognition by Cys-MR and facilitate our understanding of the role of Cys-MR in MR recognition of its ligands.
机译:甘露糖受体(MR)在巨噬细胞,未成熟树突状细胞以及多种上皮和内皮细胞上广泛表达。它是一种180 kD的I型跨膜受体,其胞外区由三部分组成:氨基末端富含半胱氨酸的结构域(Cys-MR); II型纤连蛋白结构域;以及一系列八个串联的C型凝集素碳水化合物识别结构域(CRD)。 MR的两个部分具有不同的碳水化合物识别特性:Cys-MR识别硫酸化的碳水化合物,而串联CRD区结合末端甘露糖,岩藻糖和N-乙酰基葡萄糖胺(GlcNAc)。双重碳水化合物结合特异性使MR与硫酸化和非硫酸化的多糖链相互作用,从而促进MR参与免疫和生理过程。 MR的免疫功能包括抗原捕获(通过结合非硫酸化碳水化合物)和抗原靶向(通过结合硫酸化碳水化合物),并且生理作用包括快速清除循环黄体生成激素(LH),该循环黄体激素带有以硫酸化和非硫酸化终止的多糖链-硫酸化碳水化合物。我们已经结晶并确定了未配位的Cys-MR(2.0Å)和与不同配体包括Hepes(1.7Å),4SO 4 -N-乙酰半乳糖胺(4SO)结合的Cys-MR的X射线结构 4 -GalNAc; 2.2Å),3SO4-Lewis x (2.2Å),3SO4-Lewis a (1.9Å)和6SO < sub> 4 -GalNAc(2.5Å)。 Cys-MR的整体结构由12个反平行的β链组成,分布在三个裂片中,内部对称性约为三倍。该结构包含由Cys-MR序列中的六个半胱氨酸形成的三个二硫键。配体结合位点位于第三叶的中性口袋中,配体的硫酸盐基团埋在其中。我们的结果表明,最佳的结合是通过具有硫酸盐基团的碳水化合物配体实现的,该硫酸盐基团通过形成大量氢键和与Cys-MR的Trp 117发生环堆积相互作用的糖环锚定配体。使用基于荧光的测定,我们表征了Cys-MR及其配体之间的结合亲和力,并根据晶体结构合理化了衍生的亲和力。这些研究揭示了Cys-MR识别硫酸化碳水化合物的机制,并有助于我们了解Cys-MR在MR识别配体中的作用。

著录项

  • 作者

    Liu, Yang.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号