首页> 外文学位 >Application of electrochemical methods in corrosion and battery research.
【24h】

Application of electrochemical methods in corrosion and battery research.

机译:电化学方法在腐蚀和电池研究中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Various electrochemical methods have been applied in the development of corrosion protection methods for ammonia/water absorption heat pumps and the evaluation of the stability of metallic materials in Li-ion battery electrolyte.; Rare earth metal salts (REMSs) and organic inhibitors have been evaluated for corrosion protection of mild steel in the baseline solution of 5 wt% NH 3 + 0.2 wt% NaOH to replace the conventionally used toxic chromate salt inhibitors.; Cerium nitrate provided at least comparable corrosion inhibition efficiency as dichromate in the baseline solution at 100°C. The cerium (IV) oxide formed on mild steel through the cerating process exhibited increasing corrosion protection for mild steel with prolonged exposure time in the hot baseline solution. The optimum cerating process was found to be first cerating in a solution of 2.3 g/L CeCl3 + 4.4 wt% H2O2 + appropriate additives for 20 minutes at pH 2.2 at room temperature with 30 minutes solution aging prior to use, then sealing in 10% sodium (meta) silicate or sodium molybdate at 50°C for 30 minutes.; Yttrium salts provided less corrosion protection for mild steel in the baseline solution than cerium salts. Glycerophosphate was found to be a promising chromate-free organic inhibitor for mild steel; however, its thermostability in hot ammonia/water solutions has not been confirmed yet.; The stability of six metallic materials used in Li-ion batteries has been evaluated in 1M lithium hexafluorophosphate (LiPF6) dissolved in a 1:1 volume mixture of ethylene carbonate and diethyl carbonate at 37°C in a dry-box. Aluminum is the most stable material, while Copper is active under anodic potentials and susceptible to localized corrosion and galvanic corrosion. The higher the concentration of the alloying elements Al and/or V in a titanium alloy, the higher was the stability of the titanium alloy in the battery electrolyte. 90Pt-10Ir can cause decomposition of the electrolyte resulting in a low stable potential window.
机译:在开发用于氨/水吸收热泵的腐蚀防护方法以及评估锂离子电池电解质中金属材料的稳定性方面,已采用了各种电化学方法。已对在5 wt%NH 3 + 0.2 wt%NaOH的基准溶液中的稀土金属盐(REMSs)和有机抑制剂的低碳钢腐蚀防护进行了评估,以取代常规使用的有毒铬酸盐抑制剂。;硝酸铈在100°C下提供的腐蚀抑制效率至少与基线溶液中的重铬酸盐相当。在低碳钢上,通过金属化过程形成的氧化铈(IV)在热基线溶液中的暴露时间延长,对高碳钢的腐蚀防护能力增强。发现最佳的固化过程首先是在2.3 g / L CeCl 3 + 4.4 wt%H 2 O 2 +适当的添加剂,在室温下在pH 2.2下搅拌20分钟,使用前应先进行30分钟的溶液老化,然后在10%的硅酸钠或钼酸钠在50°C的温度下密封30分钟。与基线盐相比,钇盐对低碳钢在基线溶液中的腐蚀防护作用较小。甘油磷酸被发现是一种有前途的无铬低碳钢有机抑制剂。但是,尚未证实其在热氨/水溶液中的热稳定性。在1M六氟磷酸锂(LiPF 6 )溶于37%的碳酸亚乙酯和碳酸二乙酯的1:1体积混合物中,已评估了用于锂离子电池的六种金属材料的稳定性。干箱。铝是最稳定的材料,而铜在阳极电势下具有活性,易受局部腐蚀和电腐蚀的影响。钛合金中合金元素Al和/或V的浓度越高,钛合金在电池电解质中的稳定性越高。 90Pt-10Ir会引起电解质分解,从而导致较低的稳定电势窗口。

著录项

  • 作者

    Sun, Zhaoli.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 268 p.
  • 总页数 268
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号