首页> 外文学位 >On existence and stability of spatial patterns in an activator-inhibitor system exhibiting self-replication.
【24h】

On existence and stability of spatial patterns in an activator-inhibitor system exhibiting self-replication.

机译:在展示自我复制的激活剂-抑制剂系统中空间模式的存在和稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Spontaneous pattern formation is observed in a wide variety of physical, chemical and biological processes. The pioneering work of A. Turing showed that, for reaction-diffusion systems near equilibrium, small amplitude disturbances of unstable homogeneous states can lead to spatially periodic patterns. The patterns form purely as the result of a balance between reaction and diffusion.; This dissertation centers on pattern formation in systems far from equilibrium. We treat the 1-D and 2-D Gray-Scott models, prototypical reaction-diffusion models from chemistry. Novel pattern formation phenomena, including self-replicating pulses, annular rings and spots, are the primary motivations for our interest. We focus on the attractors in the 1-D self-replication regime, and in 2-D, we present one of the first analyses of annular patterns.; In the 1-D Gray-Scott model, we present an analysis of the existence and stability of a complete family of spatially periodic patterns which form a Busse balloon. We show that these patterns are born at a critical parameter value in a Turing/Ginzburg-Landau bifurcation, where their spatial periods are O (1). Next, we analytically continue them to the regime where their spatial periods are asymptotically large, using geometric singular perturbation theory and the adiabatic Melnikov method. Depending on parameter values, the family then terminates in global bifurcations or in local bifurcations. Within the existence domain for this family, we also find the Busse balloon in which the stable periodic patterns live. Stability results are obtained using Ginzburg-Landau equation near criticality, and the stability results are numerically continued away from criticality.; In the 2-D Gray-Scott model, we prove the existence of stationary axisymmetric annular patterns via an analytic method. We then perform a stability analysis of these annular solutions, using an extension we formulate of the nonlocal eigenvalue problem (NLEP) method developed by Doelman, Gardner and Kaper. We prove that there exists a band of unstable annular wave-numbers m, and thus we expect an annular solution to break up into spots of a particular wavelength. In simulations of the full 2-D partial differential equation, we find that annular rings do break up into annuli of spots, and that the number of spots on each annulus is correctly predicted by the NLEP method. We also continue these spotted rings into the Turing regime.
机译:在各种各样的物理,化学和生物学过程中观察到自发形成图案。图灵(A. Turing)的开创性研究表明,对于接近平衡的反应扩散系统,不稳定均质态的小幅度扰动会导致空间周期性模式。这些图案纯粹是反应和扩散之间平衡的结果。本文主要研究远离平衡的系统中的模式形成。我们处理一维和二维Gray-Scott模型,这是化学反应的原型反应扩散模型。新颖的图案形成现象,包括自复制脉冲,环形环和斑点,是引起我们兴趣的主要动机。我们集中于一维自我复制机制中的吸引子,而在二维中,我们提出了环形图案的最早分析之一。在1-D Gray-Scott模型中,我们对形成Busse气球的完整空间周期模式族的存在和稳定性进行了分析。我们证明了这些模式是在图灵/金茨堡-朗道分叉处的关键参数值处产生的,它们的空间周期为 O (1 )。接下来,我们使用几何奇异摄动理论和绝热梅尔尼科夫方法,将它们继续分析到其空间周期渐近增大的状态。然后根据参数值,该族终止于全局分支或局部分支。在这个家庭的生存域内,我们还找到了稳定周期模式所居住的Busse气球。使用接近临界的Ginzburg-Landau方程获得稳定性结果,并且在数值上远离临界值继续获得稳定性结果。在二维Gray-Scott模型中,我们通过解析方法证明了固定轴对称环形图案的存在。然后,我们使用由Doelman,Gardner和Kaper开发的非局部特征值问题(NLEP)方法的扩展,对这些环形解进行稳定性分析。我们证明存在一个不稳定的环形波数 m 波段,因此我们期望环形解可以分解为特定波长的光斑。在完整的二维偏微分方程的模拟中,我们发现环形环确实会分解成斑点的环,并且通过NLEP方法可以正确预测每个环上的斑点数。我们还将这些发现的戒指继续加入图灵政权。

著录项

  • 作者

    Morgan, David Scott.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号