首页> 外文学位 >Characteristics of the Velocity Power Spectrum as a Function of Taylor Reynolds Number.
【24h】

Characteristics of the Velocity Power Spectrum as a Function of Taylor Reynolds Number.

机译:速度功率谱的特征作为泰勒雷诺数的函数。

获取原文
获取原文并翻译 | 示例

摘要

An understanding of the wide range of scales present in a turbulent flow as well as the turbulence kinetic energy associated with those scales can provide significant insight into the modeling of such flows. Since turbulence is a stochastic process, statistical quantities such as mean, root mean square, correlations and spectra are used to identify and understand the evolution of turbulent flows. Time-resolved velocity measurements presented herein are obtained using hot-wire anemometry in nearly homogeneous, isotropic and moderately high Taylor Reynolds number, Rlambda , flow downstream of an active grid. Velocity power spectra presented herein are show that the slope, n, of the inertial subrange, where the inertial subrange is defined as the wavenumber range where the power spectrum scales as kappa--n, varies with R lambda as n = 1.69 -- 5.86 Rlambda--0.645. This variation in the slope of the inertial subrange is consistent with measurements presented by Mydlarski and Warhaft (1996) in an active grid flow and Saddoughi and Veeravalli (1994) in a turbulent boundary layer. The effectiveness of velocity power spectrum normalizations proposed by Kolmogorov (1963), Von Karman and Howarth (1938), and George (1992) are compared qualitatively and quantitatively. The effectiveness of these normalizations suggests how the turbulent scales make specific portions of the velocity spectrum self-similar. It is found that the relation between the large and small scales is also shown by the normalized dissipation rate, which is defined as the dissipation rate normalized by the ratio of the turbulence kinetic energy to the time scale of the large scale structure is shown to be a constant with respect to R lambda for Rlambda ≥ 450. A modified model of the one-dimensional velocity power spectrum is proposed that is based on a model proposed by Pope (2000), which has been demonstrated to model power spectra at high value of Rlambda where the slope of the inertial subrange is very close to --5/3. This modification takes into account the varying inertial subrange slope found in the data presented herein.
机译:对湍流中存在的各种尺度以及与这些尺度相关的湍动能的了解可以为这种流的建模提供重要的见识。由于湍流是一个随机过程,因此使用统计量(例如均值,均方根,相关性和频谱)来识别和理解湍流的演变。本文介绍的时间分辨速度测量值是使用热线风速仪在有源网格下游的近似均质,各向同性和中等高的泰勒雷诺数Rlambda流中获得的。此处显示的速度功率谱显示惯性子范围的斜率n,其中惯性子范围定义为功率谱标度为kappa--n的波数范围,随R lambda的变化为n = 1.69-5.86拉姆达-0.645。惯性子范围斜率的这种变化与Mydlarski和Warhaft(1996)在主动网格流中以及Saddoughi和Veeravalli(1994)在湍流边界层中的测量结果一致。定性和定量地比较了由Kolmogorov(1963),Von Karman和Howarth(1938)和George(1992)提出的速度功率谱归一化的有效性。这些归一化的有效性表明湍流尺度如何使速度谱的特定部分自相似。发现归一化耗散率也显示了大尺度和小尺度之间的关系,归一化耗散率定义为由湍流动能与大规模结构的时间尺度之比归一化的耗散率。对于Rlambda≥450,相对于R lambda的常数。基于Pope(2000)提出的模型,提出了一种一维速度功率谱的修正模型,该模型已被证明可以在高数值下对功率谱建模。惯性子范围的斜率非常接近--5 / 3的Rlambda。该修改考虑了在此呈现的数据中发现的变化的惯性子范围斜率。

著录项

  • 作者

    Puga, Alejandro J.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Aerospace engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号