首页> 外文学位 >Controlling myoblast phenotype with RGD-modified alginate matrices.
【24h】

Controlling myoblast phenotype with RGD-modified alginate matrices.

机译:用RGD修饰的藻酸盐基质控制成肌细胞表型。

获取原文
获取原文并翻译 | 示例

摘要

New strategies are being developed to grow tissues and organs for transplantation from cells and biomaterials. Biomaterials are critical components of engineered tissues, as they act as scaffolds for new tissues development. To date, however, engineered tissues do not have the complete structure or function of native tissues they are to replace. It is important to provide cells within these tissues with biological signals to help guide cell function during engineered tissue development. We hypothesized that the phenotype of cells adherent to a biomaterial could be regulated by controlling the mechanism of cell adhesion to the biomaterial, and we developed a model biomaterial system based on alginate hydrogels to address this hypothesis.; Alginates are hydrophilic polysaccharides composed of mannuronic (M) and guluronic (G) acid monomers that gel in the presence of divalent cations such as Ca+2. We modified the alginates with RGD-peptides using carbodiimide chemistry. Ligand type and density may be varied on alginates of varying M:G over several orders of magnitude, with incorporation efficiency typically >60%. Myoblasts adhered, proliferated and differentiated on RGD-alginate hydrogels with a surface density of 10 fmols/cm2. Myoblast adhesion specificity was demonstrated, as soluble RGD (1mM) completely inhibited adhesion to the substrates, while RGE-peptides (1mM) had no effect. Myoblast function was controlled by varying ligand type, ligand density, and M:G of the alginate. Myoblast proliferation increased on RGD vs. YIGSR peptide ligands (density = 10 fmols/cm2), and proliferation and fusion increased by increasing RGD-density from 1–100 fmols/cm2. Furthermore, myoblast proliferation and fusion, but not muscle-specific gene expression, were dependent on the M:G ratio of alginates. Varying M:G ratio from 30:70 to 65:35 increased myoblast proliferation and fusion, but did not alter the expression of MyoD or myogenin (myoblast transcription factors) or the activity levels of creatine kinase. This effect was caused by calcium calcium ions released from different alginate substrates. In conclusion, myoblast phenotype may be controlled by varying ligand type and density at the material surface, and by modulating local calcium concentrations using different alginate types.
机译:正在开发新的策略以从细胞和生物材料中生长出用于移植的组织和器官。生物材料是工程组织的重要组成部分,因为它们充当了新组织发展的支架。然而,迄今为止,工程组织还没有要替代的天然组织的完整结构或功能。为这些组织内的细胞提供生物学信号以在工程组织发展过程中帮助指导细胞功能非常重要。我们假设粘附在生物材料上的细胞表型可以通过控制细胞粘附到生物材料上的机制来调节,并且我们开发了一种基于藻酸盐水凝胶的生物材料模型系统来解决这个假设。海藻酸盐是由甘露糖醛酸(M)和古洛糖醛酸(G)的单体组成的亲水性多糖,它们在二价阳离子(如Ca +2 )存在下发生胶凝。我们使用碳二亚胺化学修饰了带有RGD肽的藻酸盐。配体类型和密度可以在几个数量级上改变M:G的藻酸盐而变化,掺入效率通常> 60%。成肌细胞在RGD-藻酸盐水凝胶上粘附,增殖和分化,其表面密度为10 fmol / cm2。证明了成肌细胞粘附特异性,因为可溶性RGD(1mM)完全抑制了对基质的粘附,而RGE肽(1mM)没有作用。成肌细胞功能通过改变配体类型,配体密度和藻酸盐的M:G来控制。 RGD与YIGSR肽配体(密度= 10 fmol / cm 2 )相比,成肌细胞增殖增加,而RGD密度从1–100 fmol / cm 2 增加,增殖和融合也增加。超级>。此外,成肌细胞的增殖和融合而不是肌肉特异性基因的表达取决于藻酸盐的M:G比。从30:70到65:35的M:G比值变化可增加成肌细胞的增殖和融合,但不会改变MyoD或肌成蛋白(成肌细胞转录因子)的表达或肌酸激酶的活性水平。这种作用是由从不同藻酸盐底物释放的钙,钙离子引起的。总之,成肌细胞表型可以通过改变材料表面的配体类型和密度,以及通过使用不同藻酸盐类型调节局部钙浓度来控制。

著录项

  • 作者

    Rowley, Jon A.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 p.2820
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号