首页> 外文学位 >Macroalgal materials: Foiling fracture and fatigue from fluid forces.
【24h】

Macroalgal materials: Foiling fracture and fatigue from fluid forces.

机译:大型藻类材料:流体破裂会造成破裂和疲劳。

获取原文
获取原文并翻译 | 示例

摘要

The persistence of qualitatively weak and flimsy algae on wave-exposed shores is generally attributed to their structural flexibility, which is presumed to reduce hydrodynamic forces. In this dissertation I describe the material properties of over 30 algal materials and investigate the relationship between material properties and fracture in macroalgae using fatigue fracture mechanics, computer modeling, and a novel, virtual-reality based, dynamic testing system.; Among biomaterials, non-coralline algae have generally low strengths (0.20 to 8.08 MN/m2) and high breaking strains (0.14 to 0.79). The absence of upright, non-extensible algal structures supports the idea that extensibility is critical to the persistence of algae on wave-swept shores.; As algae are subjected to roughly 8,000 waves each day, I examine the resistance to cyclic crack propagation in algal blades using protocols and analyses gleaned from the rubber technology industry. The algal species, M. flaccida and P. occidentalis, from wave-exposed sites have higher critical energy release rates than U. expansa blades collected from protected sites. However, for blades with large cracks already present, U. expansa blades are predicted to break at higher stresses than blades of the two wave-exposed species.; While the flexibility of algae generally results in reduced drag forces, the potential for large inertial forces concomitantly increases with freedom of motion. I use a computer model of the bull kelp N. leutkeana to investigate the effects of material properties on the loading imposed on the kelp stipe under ocean waves. Using the cyclic breaking values of stress and strain for N. leutkeana stipe, the safety factor under large waves is maximized when stipe stiffness is 20 MN/m 2.; I incorporated the N. leutkeana computer model into the testing apparatus to create a closed-loop system that reproduces natural loading patterns in the lab. Under large simulated waves, N. leutkeana stipes exhibit an initial stiffness (40 MN/m2) near the predicted optimum of 20 MN/m2. The resilience of N. leutkeana stipes under natural loading patterns is remarkably low (60%). Comparison to a standard linear solid model suggests that stipe material properties are well tuned to the kelp's natural period of oscillation such that resilience is minimized.
机译:定性的薄弱藻类在波浪暴露的海岸上的持久性通常归因于它们的结构柔性,这被认为可以减少水动力。在这篇论文中,我描述了30多种藻类材料的材料特性,并使用疲劳断裂力学,计算机建模和基于虚拟现实的新型动态测试系统研究了藻类材料特性与断裂之间的关系。在生物材料中,非珊瑚藻的强度通常较低(0.20至8.08 MN / m 2 ),断裂应变较高(0.14至0.79)。缺少直立的,不可伸展的藻类结构,这支持了以下观点:可伸展性对于波涛汹涌的海岸上藻类的持久性至关重要。由于藻类每天要遭受大约8000次波浪冲击,因此我使用协议检查了藻类叶片中周期性裂纹扩展的阻力,并分析了橡胶技术行业收集的数据。藻种, flaccida P。暴露在波浪中的西方动物的临界能量释放速率高于 U。从保护区收集的expansa刀片。但是,对于已经存在大裂纹的刀片, U。据预测,expansa叶片的应力会比两种波浪暴露物种的叶片更高。虽然藻类的柔韧性通常会降低阻力,但随着运动的自由度,大惯性力的潜力随之增加。我使用公海带 N的计算机模型。 leutkeana 研究材料特性对海浪作用下海带柄施加的载荷的影响。使用应力和应变的循环破坏值来表示。 leutkeana 刀柄,当刀柄刚度为20 MN / m 2 时,大波浪下的安全系数最大。我加入了 N。 leutkeana 计算机模型输入到测试设备中,以创建一个闭环系统,该系统可以再现实验室中的自然加载模式。在大的模拟波下, N。 Leutkeana 刀柄在预计的最佳20 MN / m 2 附近表现出初始刚度(40 MN / m 2 )。自然负载模式下的 leutkeana 柄的回弹力非常低(60%)。与标准线性实体模型的比较表明,刀柄材料的性能已根据海带的自然振荡周期进行了很好的调整,从而使回弹力降至最低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号