首页> 外文学位 >Biomechanical analysis of cuffed distal end-to-side anastomosis of bypass grafts and design optimization.
【24h】

Biomechanical analysis of cuffed distal end-to-side anastomosis of bypass grafts and design optimization.

机译:搭接旁路袖带远端端侧吻合的生物力学分析和设计优化。

获取原文
获取原文并翻译 | 示例

摘要

Arterial bypass grafts, the major treatment for arterial stenosis, have long-term patencies limited by intimal hyperplasia (IH), especially at the distal end-to-side anastomosis. Use of the Miller's cuff, a piece of vein interposed between the synthetic graft and the host artery has shown an increased patency over conventional anastomoses. A previous chronic porcine experiment has shown a reduced amount of IH in a venous cuffed anastomosis relative to that in an ePTFE cuffed anastomosis, both constructed with the same initial geometry. Since mechanical factors are thought to influence the vascular remodeling process, a computational biomechanical analysis was performed in order to find the mechanism behind the reduced IH in the venous cuff. Few prior studies have used the more realistic, large strain models for wall stress analysis and optimizations to reduce IH have only considered hemodynamic factors present in the physiologically loaded anastomotic geometry.; In this study, a unique hyperelastic finite element and a pulsatile computational fluid dynamic simulation were performed to compare the mechanical environments in the ePTFE and venous Miller's cuff distal end-to-side anastomoses. Transport of nitric oxide released from the venous cuff was also simulated. A multiple regression analysis was performed between these factors and the histological data. An optimized design was developed based on the results of the regression analysis.; The study showed that: (1) the ePTFE and venous cuffs deformed differently under physiological loading with increased strain distribution along the artery floor in the latter, (2) wall strain and oscillatory shear index (OSI) contribute to IH proportionally and equivalently in the ePTFE cuff, and (3) mechanical factors alone do not account for the reduced IH in the venous cuff, suggesting the involvement of some biological factor. Based on the biomechanical simulation, three configurations have been proposed to optimize the anastomotic design.; Future work includes: (1) identification of the specific biological factor that inhibits IH in the venous cuff and (2) characterization of the mechanics for the bypass graft in a more sophisticated way, such as including structure and fluid interaction.
机译:动脉搭桥术是动脉狭窄的主要治疗方法,其长期开放性受到内膜增生(IH)的限制,尤其是在远端端到侧吻合处。使用米勒袖套,在合成移植物和宿主动脉之间插入一条静脉,与传统的吻合术相比,通畅性提高了。先前的一项慢性猪实验表明,静脉套囊吻合术中的IH量要比ePTFE袖套吻合术中的IH量要少,两者均以相同的初始几何形状构成。由于认为机械因素会影响血管重塑过程,因此进行了计算生物力学分析,以发现静脉套囊IH降低的背后机制。很少有先前的研究使用更现实的大应变模型进行壁应力分析,并且为了降低IH而进行的优化仅考虑了生理加载的吻合几何形状中存在的血液动力学因素。在这项研究中,进行了独特的超弹性有限元和脉动计算流体动力学模拟,以比较ePTFE和米勒静脉套囊远端端侧吻合的机械环境。还模拟了从静脉套囊释放的一氧化氮的转运。在这些因素和组织学数据之间进行了多元回归分析。基于回归分析的结果,开发了优化的设计。研究表明:(1)ePTFE和静脉套囊在生理负荷下变形不同,沿动脉底的应变分布增加;(2)壁应变和振荡剪切指数(OSI)在IH中成比例和相等地起作用。 ePTFE袖套和(3)单独的机械因素并不能解释静脉套中IH的降低,这暗示了某些生物学因素的参与。基于生物力学仿真,提出了三种配置以优化吻合设计。未来的工作包括:(1)识别抑制静脉套中IH的特定生物学因素,以及(2)以更复杂的方式表征旁路移植物的力学特性,例如结构和流体相互作用。

著录项

  • 作者

    Li, Xue-Mei.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Engineering Biomedical.; Health Sciences Medicine and Surgery.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;应用力学;
  • 关键词

  • 入库时间 2022-08-17 11:46:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号