首页> 外文学位 >Mechanistic and Reactivity Studies of Cationic Cyclizations Catalyzed by Supramolecular Encapsulation.
【24h】

Mechanistic and Reactivity Studies of Cationic Cyclizations Catalyzed by Supramolecular Encapsulation.

机译:超分子包封催化的阳离子环化反应的机理和反应性研究。

获取原文
获取原文并翻译 | 示例

摘要

Chapter 1. A literature review of supramolecular reaction control and the efforts made towards developing supramolecular catalysts is presented. Representative examples of the fundamental ways in which supramolecular encapsulation can promote reactivity are given, with emphasis placed on catalytic reactions involving self-assembled hosts. The [Ga4L6] 12- supramolecular assembly developed by the Raymond group is introduced, and previous work on its ability to enhance the reactivity of its encapsulated guests is reviewed.;Chapter 2. The tetrahedral [Ga4L6] 12- assembly encapsulates propargyl enammonium cations capable of undergoing the aza Cope rearrangement. For propargyl enammonium substrates that are encapsulated in the [Ga4L6]12- assembly, rate accelerations of up to 184 are observed when compared to the background reaction. After rearrangement, the product iminium ion is released into solution and hydrolyzed allowing for catalytic turnover. The activation parameters for the catalyzed and uncatalyzed reaction were determined, revealing that a lowered entropy of activation is responsible for the observed rate enhancements. The catalyzed reaction exhibits saturation kinetics; the rate data obey the Michaelis-Menten model of enzyme kinetics, and competitive inhibition using a non-reactive guest has been demonstrated.;Chapter 3. The tetrahedral [Ga4L6] 12- assembly catalyzes the Nazarov Cyclization of 1,3-pentadienols with extremely high levels of efficiency. The catalyzed reaction proceeds at a rate over a million times faster than that of the background reaction, an increase comparable to those observed in some enzymatic systems. This catalysis operates under aqueous conditions at mild temperature and pH ranges, and the reaction is halted by the addition of an appropriate inhibitor. The product of this reaction, pentamethylcyclopentadiene, is a competitive guest in the host assembly, and the catalysis suffers from product inhibition. This was alleviated by the addition of maleimide, which readily undergoes a Diels-Alder reaction with the product to form a more weakly-encapsulated adduct.;Chapter 4. The kinetically-controlled, regioselective deprotonation of cyclopentenyl cations mediated by encapsulation within the [Ga4L 6]12- assembly is presented. The regiochemistry of the deprotonation step determines which one of two possible products is formed. Although this deprotonation step occurs at both possible positions outside the host interior, encapsulation renders the process >95% regioselective. Moreover, subtle differences in the stereochemistry of the encapsulated cyclopentenyl cation switch the product selectivity of this process. This reactivity shares several features with the regioselective, enzyme-controlled deprotonation of the geranyl cation involved in the biosynthesis of myrcene and β-ocimene.;Chapter 5. Mechanistic studies of the processes described in the two preceding chapters are presented. A combined experimental and computational approach is used to elucidate the reaction mechanism of both the catalyzed and the uncatalyzed Nazarov cyclization of pentadienols. Kinetic analysis, 18O exchange experiments, and computational studies implicate a mechanism in which encapsulation, protonation and water loss from substrate are reversible, followed by irreversible electrocyclization. While electrocyclization is rate-determining in the uncatalyzed reaction, the barrier for water loss and for electrocyclization are nearly equal in the assembly-catalyzed reaction. Analysis of the proposed energetics of the catalyzed and uncatalyzed reaction revealed that transition state stabilization contributes significantly to the catalytic rate acceleration.
机译:第1章。介绍了超分子反应控制的文献综述以及为开发超分子催化剂所做的努力。给出了超分子包封可以促进反应性的基本方式的代表性实例,重点放在涉及自组装宿主的催化反应上。介绍了由雷蒙德小组开发的[Ga 4 L 6 ] 12-超分子组装体,并就其增强反应性的能力进行了先前的研究。 第2章。四面体[Ga 4 L 6 ] 12-装配体包封能够进行氮杂Cope重排的炔丙基en铵阳离子。对于封装在[Ga 4 L 6 ] 12-组件中的炔丙基en基质,与之相比,观察到的速率加​​速高达184进行后台反应。重排后,产物亚胺离子被释放到溶液中并水解以实现催化转化。确定了催化和未催化反应的活化参数,表明活化的熵降低是观察到的速率提高的原因。催化反应表现出饱和动力学。 第3章四面体[Ga 4 L 6 ] 12-装配体以极高的效率催化1,3-戊二烯醇的Nazarov环化。催化反应的进行速度比背景反应快一百万倍,与某些酶体系中观察到的增加相当。该催化作用在温和的温度和pH值的水性条件下进行,并且通过添加适当的抑制剂来中止反应。该反应的产物五甲基环戊二烯是宿主组合物中的竞争性客体,并且催化受到产物抑制的影响。通过添加马来酰亚胺可以减轻这种情况,马来酰亚胺容易与产物发生狄尔斯-阿尔德反应,形成更弱地包封的加合物。<大胆>第4章。环戊烯基阳离子的动力学控制,区域选择性去质子化提出了由[Ga 4 L 6 ] 12-组装过程中的介导作用。去质子化步骤的区域化学决定了形成两种可能产物中的哪一种。尽管该去质子化步骤发生在宿主内部外部的两个可能位置上,但封装使该过程的区域选择性> 95%。而且,被包封的环戊烯基阳离子的立体化学上的细微差别切换了该方法的产物选择性。这种反应性与参与月桂烯和β-烯丙基二甲醚生物合成的香叶基阳离子的区域选择性,酶控制的去质子化具有几个特征。第5章。对前两章所述过程的机理研究被提出。实验和计算相结合的方法用于阐明戊二烯醇的催化和未催化纳扎罗夫环化的反应机理。动力学分析, 18 交换实验和计算研究暗示了一种机理,其中包封,质子化和从底物的失水是可逆的,然后是不可逆的电环化。尽管在未催化反应中电环化是决定速率的,但在组装催化反应中水分损失和电环化的障碍几乎相等。对所提议的催化和未催化反应的能量学分析表明,过渡态稳定化显着促进了催化速率的提高。

著录项

  • 作者

    Hastings, Courtney James.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry General.;Chemistry Organic.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号