首页> 外文学位 >Improving electrochemical methods of producing hydrogen in alkaline media via ammonia and urea electrolysis.
【24h】

Improving electrochemical methods of producing hydrogen in alkaline media via ammonia and urea electrolysis.

机译:改进了通过氨和尿素电解在碱性介质中生产氢的电化学方法。

获取原文

摘要

Theoretically, ammonia electrolysis consumes 95% less energy than its major competitor water electrolysis and offers an economical, environmental, and efficient means for reducing nitrate contaminations in ground and drinking water. Thermodynamically at standard conditions, ammonia electrolysis consumes 1.55 Wh to produce one gram of hydrogen. This same gram of hydrogen generates 33 Wh utilizing a proton exchange membrane fuel cell (PEMFC). There is a potential of 31.45 Wh of net energy when coupling an ammonia electrolytic cell (AEC) and a PEMFC. Considering that PEMFCs are 60% efficient, the actual energy output ranges between 18 and 20 Wh. Prior to the research shown here, ammonia electrolysis in alkaline media was requiring more than 20 Wh of energy input due to slow anode kinetics and poor electrochemical cell design thus making any chances of a self-sustaining energy generator unfeasible. This research focused on improving and optimizing anode electrocatalyst materials, electrode configurations, and cell designs, as well as demonstrating stationary and mobile applications of ammonia electrolysis.;In addition to ammonia electrolysis, a novel electrochemical technique, urea electrolysis in alkaline media, was created and investigated. Similar to ammonia electrolysis, the anodic reaction, which is the oxidation of urea, was found to be the most rate-limiting half-cell reaction and required improvement. This research focused on fundamentally understanding the mechanism of urea electrolysis as well as investigating common electrocatalysts for small organic molecules. As a result, urea electrolysis in alkaline media proved to be a direct, economical, and environmental approach to producing hydrogen electrochemically with an inexpensive transition metal.
机译:从理论上讲,氨电解比其主要竞争对手水电解消耗的能源少95%,并且为减少地下水和饮用水中的硝酸盐污染提供了一种经济,环保和有效的方法。在标准条件下以热力学方式进行,氨气电解消耗1.55 Wh来产生一克氢气。利用质子交换膜燃料电池(PEMFC),相同克数的氢气产生33 Wh。氨电解池(AEC)和PEMFC耦合时,净能量为31.45 Wh。考虑到PEMFC的效率为60%,实际的能量输出范围为18至20 Wh。在进行此处所示的研究之前,由于缓慢的阳极动力学和不良的电化学电池设计,在碱性介质中进行氨电解需要输入超过20 Wh的能量,因此使自持式能量发生器的任何可能性都不可行。这项研究的重点是改进和优化阳极电催化剂材料,电极配置和电池设计,以及演示氨电解的固定和移动应用。除了氨电解之外,还创建了一种新的电化学技术,即在碱性介质中进行尿素电解。并进行调查。与氨电解相似,发现阳极反应(即尿素的氧化)是最大的限速半电池反应,需要改进。这项研究的重点是从根本上了解尿素电解的机理以及研究有机小分子的常见电催化剂。结果,尿素在碱性介质中的电解被证明是一种用廉价的过渡金属电化学生产氢的直接,经济和环境的方法。

著录项

  • 作者

    Boggs, Bryan Kenneth.;

  • 作者单位

    Ohio University.;

  • 授予单位 Ohio University.;
  • 学科 Engineering Chemical.;Energy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号