首页> 外文学位 >Modeling of electronic states in low-temperature-grown gallium arsenide and conduction properties of tunneling based contact.
【24h】

Modeling of electronic states in low-temperature-grown gallium arsenide and conduction properties of tunneling based contact.

机译:低温生长的砷化镓中电子态的建模以及基于隧穿的接触的导电特性。

获取原文
获取原文并翻译 | 示例

摘要

A set of defect distribution models for un-annealed low-temperature-grown GaAs (LTG:GaAs) are developed, based on experimental observations with scanning tunneling spectroscopy, incorporating the Coulomb gap and Hubbard correlation in the distribution of the density of states. The models are tested against independent experiments on bulk resistivity and surface electric field. With the models as the foundation, the conduction models are developed for nonalloyed ohmic contacts, in micron-scale and nanometer-scale, to n-type GaAs (n-GaAs) which employ a surface layer of LTG:GaAs. For the micron-scale ohmic contact, the conduction model has been used to fit measured ρc versus LTG:GaAs layer thickness and versus measurement temperature. These comparisons provide insights into the contact mechanism (electron tunneling between metal states and conduction band states in n-GaAs) and indicate that low potential barrier heights (due to un-pinned surface Fermi level) and the high density of activated donors (∼1020 cm−3) in n++ GaAs have been achieved in these ex situ contacts. For the nanometer-scale ohmic contact, the conduction model is based on the sequential tunneling through two barriers—in xylyl dithiol molecules and in LTG:GaAs/n++GaAs depletion region—with part of LTG:GaAs midgap defect band in between. The model has been used to fit ρ c versus undoped and Be-doped contacts. It shows quantitatively that the abundance of the available states around the Fermi level in Be-doped case contributes to the superior contact performance.
机译:基于扫描隧道光谱的实验观察结果,在状态密度分布中纳入了库仑间隙和Hubbard相关性,建立了一组未退火的低温生长的GaAs(LTG:GaAs)的缺陷分布模型。针对体电阻率和表面电场的独立实验对模型进行了测试。以这些模型为基础,开发了微米级和纳米级非合金欧姆接触到 n 型GaAs( n -GaAs)的导电模型。其采用LTG:GaAs的表面层。对于微米级的欧姆接触,已经使用传导模型来拟合测得的ρ c 与LTG:GaAs层厚度以及测量温度的关系。这些比较提供了对接触机理( n -GaAs中金属态和导带态之间的电子隧穿)的见解,并表明低势垒高度(由于未固定的费米能级)和高在这些原位中,在n ++ GaAs中获得了活化供体的密度(〜10 20 cm -3 )斜体>联系人。对于纳米级欧姆接触,传导模型基于通过两个势垒的顺序隧穿—在二甲苯基二硫醇分子和LTG:GaAs / n ++ GaAs耗尽区中,部分LTG: GaAs在中间能隙缺陷带之间。该模型已用于拟合ρ c 与未掺杂和Be掺杂的接触。定量地表明,在被掺杂的情况下,费米能级附近的可用状态的丰富有助于优异的接触性能。

著录项

  • 作者

    Chen, Nien-Po.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Physics Condensed Matter.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号