首页> 外文学位 >Induced model category structures on categories of internal abelian group objects in cofibrantly generated model categories.
【24h】

Induced model category structures on categories of internal abelian group objects in cofibrantly generated model categories.

机译:在共纤维生成的模型类别中的内部阿贝尔群对象类别上诱导模型类别结构。

获取原文
获取原文并翻译 | 示例

摘要

For a cofibrantly generated model category C , let A( C ) denote one of the following: (1) the category Mon( C ) of monoid objects in C , with respect to a general symmetric monoidal structure, (2) the category AbMon( C ) of abelian monoid objects in C , with respect to a general symmetric monoidal structure, (3) the category AbMon( C ) of abelian monoid objects in C , with respect to the cartesian structure, (4) the category Gr( C ) of group objects in C , with respect to the cartesian structure, or (5) the category Ab( C ) of abelian group objects in C (with respect to the cartesian structure).;For each case we provide a general criterion for the existence of A( C )ind (case (1) has already been dealt with by Shipley and Schwede in [18] and case (2) by Lurie in [15]). As an application, we prove the existence of AbMon( J )ind and Ab( J )ind, where J denotes the category of compactly generated topological spaces, endowed with the standard model category structure, and where abelian monoid objects and abelian group objects are defined with respect to the cartesian structure.;Another result is Theorem 1.2. Theorem 1.3 is an application of Theorem 1.2 to motivic homotopy theory: for the category C of symmetric T-spectrum objects on the Nisnevich site, endowed with the stable motivic model category structure, A( C )ind exists (here in all cases A( C ) is defined with respect to the cartesian structure) and the free functors C→FAC ind preserve weak equivalences. For A( C ) = AbMon( C ) or A( C ) = Ab( C ), A( C )ind is a monoidal model category. One may express motivic cohomology in terms of the homotopy category of Ab( C )ind.;Keywords: Algebra, Homotopy Theory;In this thesis we consider, for each of the cases (1)-(5), the question: under which conditions may one define an induced model category structure on A( C ), denoted A( C )ind if it exists, where a morphism is a weak equivalence/fibration in the induced structure iff the underlying morphism is a weak equivalence/fibration of C ?
机译:对于由纤纤生成的模型类别C,令A(C)表示以下值之一:(1)关于一般对称单曲面结构,C中的Monoid对象的类别Mon(C),(2)类别AbMon(关于一般对称单曲面结构,C中的Abelian单面体对象C),(3)相对于笛卡尔结构的C中,AbelMonoid对象的类别AbMon(C),(4)类别Gr(C)关于笛卡尔结构的C中的组对象的数量,或(5)关于笛卡尔结构的C中的阿贝尔群对象的类别Ab(C)。;对于每种情况,我们提供存在的一般准则A(C)ind(案例(1)已由Shipley和Schwede在[18]中处理,案例(2)已由Lurie在[15]中处理)。作为一个应用,我们证明了AbMon(J)ind和Ab(J)ind的存在,其中J表示紧凑生成的拓扑空间的类别,具有标准的模型类别结构,而其中的abelian monoid对象和abelian群对象是关于笛卡尔结构定义;另一个结果是定理1.2。定理1.3是定理1.2在动机同伦理论上的应用:对于Nisnevich站点上对称T谱对象的C类,由于其具有稳定的动机模型类别结构,因此存在A(C)ind(这里在所有情况下A( C)是关于笛卡尔结构定义的,自由函子C→FAC ind保留了弱等价性。对于A(C)= AbMon(C)或A(C)= Ab(C),A(C)ind是单调模型类别。可以用Ab(C)ind的同伦范畴来表达动机同调;关键词:代数,同伦理论;在本论文中,我们针对每种情况(1)-(5)考虑以下问题:条件可能会在A(C)上定义一个诱导模型类别结构,如果存在,则表示为A(C)ind,其中,态射是诱导结构中的弱等价/纤维化,前提是基础态射是C的弱等价/纤维化?

著录项

  • 作者

    Mathey, Phillipp.;

  • 作者单位

    The University of Western Ontario (Canada).;

  • 授予单位 The University of Western Ontario (Canada).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号