首页> 外文学位 >Biomechanics and energetics of bipedal and quadrupedal walking.
【24h】

Biomechanics and energetics of bipedal and quadrupedal walking.

机译:双足和四足步行的生物力学和能量学。

获取原文
获取原文并翻译 | 示例

摘要

Muscles set the metabolic demand of walking by lifting and accelerating the center of mass, supporting weight and swinging the limbs. Walking animals conserve energy with an inverted pendulum-like exchange of the gravitational potential and kinetic energies of the center of mass. I studied a variety of species including humans to better understand the factors that set the metabolic cost of walking and the function of the inverted pendulum mechanism. Penguins have a very high metabolic cost of walking (per unit weight). Previous speculation attributed this to excessive work of waddling and poor inverted-pendulum exchange. Rather, I found that emperor penguins conserve a large fraction of their mechanical energy with a novel three-dimensional inverted pendulum-like mechanism. Walking is likely expensive for penguins because their short legs require rapid generation of muscular force. Walking quadrupeds also use inverted pendulum-like mechanics. I found that the four legs of a dog behave like the two legs of a biped because the motions of the fore limbs lag the ipsi-lateral hindlimbs by less than a quarter of the stride and the fore limbs support more than half of body weight. I counteracted the force of gravity on walking humans and found that this only slightly disrupts the inverted pendulum mechanism. Thus, the relatively high (per unit weight) metabolic cost of walking in reduced gravity is not explained by the work performed on the center of mass. But, in normal gravity, performing work on the center of mass and generating force to support body weight equally explain about 60% of the increase in net metabolic rate over a four-fold speed range. Furthermore, when humans carry loads of 30% body weight at moderate speeds, net metabolic rate increases in direct proportion to both performing work on the center of mass and generating force to support weight, suggesting that the metabolic cost of swinging the limbs is relatively small at these speeds. A more complete understanding of the biomechanical determinants of the metabolic cost of walking must consider both the muscular costs of performing work and generating force.
机译:肌肉通过举起并加速重心,支撑体重和摆动四肢来设置步行的新陈代谢需求。行走的动物通过倒立摆式的重心势能和动能交换来节省能量。我研究了包括人类在内的各种物种,以更好地理解决定步行代谢成本和倒立摆机制功能的因素。企鹅的步行代谢成本很高(每单位重量)。先前的推测归因于过度的蹒跚工作和不良的倒立摆交换。相反,我发现皇帝企鹅通过一种新颖的三维倒立摆状机制来保留了很大一部分机械能。企鹅走路可能很昂贵,因为它们的短腿需要快速产生肌肉力量。步行四足动物还使用倒立摆式的机械手。我发现狗的四只腿的行为就像两足动物的两条腿一样,因为前肢的运动滞后于同侧后肢的步幅不到四分之一,并且前肢支撑着一半以上的体重。我抵消了重力对行走中的人类的作用,发现这仅会轻微干扰倒立的摆锤机制。因此,在重心下行走的相对较高(每单位重量)的代谢成本不能通过在质心上进行的工作来解释。但是,在正常重力下,在质心上执行工作并产生支撑体重的力同样可以解释在四倍速度范围内净代谢率增加的大约60%。此外,当人类以中等速度承载30%的体重时,净代谢率与在质心上进行工作并产生支撑体重的力成正比,这表明摆动四肢的代谢成本相对较小。以这些速度。要更全面地了解步行的代谢成本的生物力学决定因素,必须同时考虑进行工作和产生力量的肌肉成本。

著录项

  • 作者

    Griffin, Timothy Michael.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Animal Physiology.; Biology Zoology.; Engineering Biomedical.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生理学;动物学;生物医学工程;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号