首页> 外文学位 >Electron transport and recombination in nanowire dye-sensitized solar cells.
【24h】

Electron transport and recombination in nanowire dye-sensitized solar cells.

机译:纳米线染料敏化太阳能电池中的电子传输和复合。

获取原文
获取原文并翻译 | 示例

摘要

The dye-sensitized solar cell (DSSC) is a promising low cost photovoltaic device. A typical DSSC consists of a porous film made out of TiO2 nanoparticles, a monolayer of dye adsorbed on the TiO2 surface and a liquid electrolyte. The electrolyte fills the pores of the nanoparticle film forming a semiconductor-dye-electrolyte interface with large surface area. During illumination of the cell, the dye molecules inject electrons into the TiO2 nanoparticles. The injected electrons diffuse through the nanoparticle network by hopping from particle to particle until they are collected at a transparent conductive oxide (TCO) anode. Meanwhile, the charged dye molecules are reduced through an electrochemical reaction with a reductant in the electrolyte. The oxidized ionic species diffuse to the counter electrode and are reduced by electrons that have been collected at the anode and have traveled through the load to complete the circuit. Currently, dye-sensitized solar cells have reached efficiencies above 11%, but further improvement is limited by electrons recombining with the electrolyte during their transport through the semiconductor nanoparticle network. Nanowire DSSCs have been recently introduced and have the potential to overcome the limitations of nanoparticle DSSCs, since the electron percolation through the nanoparticle network is replaced by a direct electron pathway from the point of injection to the TCO. Understanding the electron transport and recombination mechanisms in nanowire DSSCs is one of the key steps to improving DSSC efficiency. Towards this end polycrystalline TiO2, single-crystalline TiO2 and single crystalline ZnO nanowire DSSCs were fabricated and analyzed using current-voltage characteristics, optical measurements, and transient perturbation techniques such as intensity modulated photocurrent spectroscopy, photocurrent decay and open-circuit photovoltage decay.;For single-crystal ZnO nanowire DSSCs, the measured electron transport time constants are independent of light intensity but change with nanowire length, seeding method and annealing time. Even if the measured transients are limited by the RC time constant of the solar cell, using the measured time constants as an upper limit for the actual electron transport time leads to the conclusion that the electron transport rate in ZnO nanowires is at least two orders of magnitude faster than the recombination rate. This indicates that the charge collection efficiency in ZnO nanowire DSSCs is nearly 100%. These results show that films can be made out of 100 mum long ZnO nanowires while maintaining efficient charge collection.;For DSSCs based on polycrystalline anatase TiO2 nanowires, the electron transport times show a power-law dependence on illumination intensity similar to that reported for TiO2 nanoparticle DSSCs. The magnitude of the electron transport times is also comparable to that of nanoparticle DSSCs, indicating that electron trapping and detrapping determine transport times for polycrystalline TiO2 nanowire DSSCs. Surprisingly, even for single-crystal rutile TiO2 nanowire DSSCs, the electron transport rate is on the order of the electron transport rate in nanoparticle-based DSSCs and not as fast as would be expected. Electron transport is slow and light intensity dependent indicating that trapping and detrapping, most likely in surface traps, still play an important role in electron transport even in single-crystal rutile TiO2 nanowires.
机译:染料敏化太阳能电池(DSSC)是一种有前途的低成本光伏设备。典型的DSSC包括由TiO2纳米颗粒制成的多孔膜,吸附在TiO2表面的单层染料和液体电解质。电解质填充纳米颗粒膜的孔,从而形成具有大表面积的半导体-染料-电解质界面。在细胞照射期间,染料分子将电子注入TiO2纳米颗粒中。注入的电子通过从一个粒子跳到另一个粒子而扩散穿过纳米粒子网络,直到它们被收集在透明导电氧化物(TCO)阳极上为止。同时,带电的染料分子通过与电解质中的还原剂的电化学反应被还原。氧化的离子物质扩散到对电极,并被在阳极收集并经过负载以完成电路的电子还原。当前,染料敏化太阳能电池的效率已达到11%以上,但是进一步的改进受到电子在通过半导体纳米粒子网络传输过程中与电解质复合的限制。纳米线DSSC最近被引入,并有可能克服纳米颗粒DSSC的局限性,因为通过纳米颗粒网络的电子渗透被从注入点到TCO的直接电子路径所取代。了解纳米线DSSC中的电子传输和复合机制是提高DSSC效率的关键步骤之一。为此,利用电流-电压特性,光学测量和瞬态扰动技术(例如强度调制光电流谱,光电流衰减和开路光电压衰减),制造并分析了多晶TiO2,单晶TiO2和单晶ZnO纳米线DSSC。对于单晶ZnO纳米线DSSC,测得的电子传输时间常数与光强度无关,但随纳米线长度,晶种方法和退火时间而变化。即使所测得的瞬变受太阳能电池的RC时间常数的限制,使用所测得的时间常数作为实际电子传输时间的上限也会得出这样的结论,即ZnO纳米线中的电子传输速率至少为2个数量级。幅度比重组率快。这表明ZnO纳米线DSSC中的电荷收集效率接近100%。这些结果表明,可以用100微米长的ZnO纳米线制成薄膜,同时保持有效的电荷收集。对于基于多晶锐钛矿型TiO2纳米线的DSSC,电子传输时间与照明强度的幂律相关性与TiO2相似。纳米DSSC。电子传输时间的大小也可以与纳米颗粒DSSC的大小相比较,这表明电子的俘获和去俘获决定了多晶TiO2纳米线DSSC的传送时间。出乎意料的是,即使对于单晶金红石型TiO2纳米线DSSC,电子传输速率也与基于纳米颗粒的DSSC中的电子传输速率相同,并且不如预期的那样快。电子传输是缓慢的且依赖于光强度,这表明,即使在单晶金红石型TiO2纳米线中,陷阱和去陷阱(最有可能在表面陷阱中)仍在电子传输中起重要作用。

著录项

  • 作者

    Enache-Pommer, Emil.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号