首页> 外文学位 >Bone tissue engineering in a rotating bioreactor: A quantitative approach.
【24h】

Bone tissue engineering in a rotating bioreactor: A quantitative approach.

机译:旋转生物反应器中的骨组织工程:一种定量方法。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we have undertaken a quantitative approach toward the design, construction, and functional evaluation of a new microcarrier scaffold system of osteoblast-like cell culture for in vitro tissue engineering of bone in the High Aspect Ratio Vessel (HARV) rotating bioreactor. Using novel methods of numerical simulation and in situ particle tracking, we showed that microcarriers with density greater than the surrounding fluid exhibit a periodic orbital motion equal to their sedimentation speed, and an outward, radial migration leading to repeated collisions with the bioreactor wall. In contrast, lighter-than-water microcarriers exhibit an inward migration towards the center of the bioreactor, and avoid bioreactor wall collisions and consequent damage to attached cells and tissues.; To exploit this result, we fabricated novel lighter-than-water scaffolds based on hollow microcapsules of biodegradable poly(lactic-co-glycolic acid) (PLAGA). Individual microcapsules were thermally fused in predetermined size ranges to form three-dimensional (3-D) scaffolds with 25–40% internal pore volume and 100 to 300 μm median pore size. Scaffolds exhibited a controlled, collision free trajectory in the bioreactor with velocities in a range from 1 to 100 mm/s depending on scaffold properties. Peak shear stress imparted to cells on the exterior scaffold during culture ranged from 0.22 to 0.26 N/m2. Rates of internal fluid perfusion during scaffold motion were calculated using a mathematical model and ranged from 0.01–1 mm/s. Cells within interior regions of the scaffold experience peak shear stress far less (≈0.03 N/m2) than those on the exterior.; Bone cells cultured on microcarrier scaffolds in the rotating bioreactor attached homogenously to the scaffolds at densities ranging from 10 4–105 cell/cm2. Cells also retained their osteoblastic phenotype and showed significant increases in mineralized bone matrix synthesis after 7 days of dynamic cultivation in the bioreactor as compared to appropriate static culture controls. In addition, cells exhibited a robust expression of key bone marker genes such as alkaline phosphatase collagen I, and early expression of osteocalcin. These results show that the microcarrier scaffold system may be utilized to quantify functional differences in osteoblastic cell function, and to enhance the phenotype development osteoblast-like cells.
机译:在本文中,我们采用了一种定量方法来设计,构建和设计用于成骨细胞样细胞培养的新型微载体支架系统,该系统用于高长宽比容器(HARV)旋转生物反应器中的骨的体外组织工程。使用新颖的数值模拟方法和原位粒子跟踪,我们显示了密度大于周围流体的微载体表现出与其沉降速度相等的周期性轨道运动,并且向外,径向迁移导致重复与生物反应器壁碰撞。相反,比水轻的微载体表现出向生物反应器中心的向内迁移,并避免了生物反应器壁碰撞以及对附着的细胞和组织的损害。为了利用这一结果,我们基于可生物降解的聚乳酸-乙醇酸共聚物(PLAGA)的中空微囊,制造了新型的轻于水的支架。将单个微囊在预定的尺寸范围内热融合,以形成具有25–40%的内部孔体积和100至300μm中值孔径的三维(3-D)支架。支架在生物反应器中表现出受控的无碰撞轨迹,其速度范围为1至100 mm / s,具体取决于支架的性质。在培养过程中,外支架上细胞的最大剪切应力为0.22至0.26 N / m 2 。使用数学模型计算支架运动过程中的内部液体灌注速率,范围为0.01-1 mm / s。支架内部区域中的单元格经历的峰值剪切应力远小于外部单元格上的峰值剪切应力(& 0.03 N / m 2 )。在旋转生物反应器中微载体支架上培养的骨细胞以10 4 –10 5 cell / cm 2 的密度均匀附着在支架上。与合适的静态培养对照相比,在生物反应器中动态培养7天后,细胞还保留了其成骨细胞表型,并显示矿化的骨基质合成的显着增加。此外,细胞还表现出关键骨标记基因(如碱性磷酸酶胶原蛋白I)的强劲表达以及骨钙素的早期表达。这些结果表明,微载体支架系统可用于量化成骨细胞功能的功能差异,并增强成骨细胞样细胞的表型发育。

著录项

  • 作者

    Botchwey, Edward Andrew.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Biomedical.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号