首页> 外文学位 >Behavior of nano-engineered platelets in a coronary artery stenosis model.
【24h】

Behavior of nano-engineered platelets in a coronary artery stenosis model.

机译:纳米工程血小板在冠状动脉狭窄模型中的行为。

获取原文
获取原文并翻译 | 示例

摘要

Cardiovascular disease is the leading cause of death in North America. Cardiac infarction caused by thrombus plaque rupture can often lead to sudden death. Arterial stenosis caused by atherosclerosis is an important precursor leading to thrombus formation. Shear stress, abnormal lipid metabolism, and subendothelial layer exposure are the major contributors to arterial thrombus formation. Platelet activation by the above factors, followed by adhesion is the basic sequence in thrombus formation.; Platelets were encapsulated with nanofilm in order to reduce platelet activation and adhesion under high shear stress. Polyions, nanoparticles and immunoglobulins were assembled in nano-organized shells on fixed bovine platelets through the electrostatic layer-by-layer (LbL) self-assembly technique. The coverage of 78-nm silica and 45-nm fluorescent nanospheres on platelets was studied under TEM or fluorescence microscopes. An IgG-layer was adsorbed on platelets in alternation with poly(styrenesulfonate), and its specific immune-recognition and targeting with fluorescent anti-IgG-FITC were demonstrated. Not only limited to fixed platelets, live platelets were also coated with polyions with a outermost layer of heparin. Most platelets were alive and not activated after the coating procedure and no obvious cytotoxicity was observed.; A coronary artery stenosis silicone model was built to test encapsulated platelet function under high shear stress generated by the stenosis. In the platelet activation study, encapsulated platelets released less TXB2 compared with unmodified platelets. Platelets with heparin coating were not that easily adhered onto collage substrate in silicone model after the flow experiment. The heparin shell might block the possible binding reactions between collagen and platelet surface glycoproteins.; In conclusion, the nano-engineered platelets expressed less activation and adhesion under high shear stress.
机译:在北美,心血管疾病是主要的死亡原因。由血栓斑块破裂引起的心肌梗塞通常可导致猝死。由动脉粥样硬化引起的动脉狭窄是导致血栓形成的重要先兆。剪切应力,异常的脂质代谢和内皮下层暴露是导致动脉血栓形成的主要因素。由上述因素引起的血小板活化,然后是粘附是血栓形成的基本顺序。为了减少血小板在高剪切应力下的活化和粘附,用纳米膜包裹了血小板。通过静电逐层(LbL)自组装技术,将聚离子,纳米颗粒和免疫球蛋白组装在固定的牛血小板上的纳米组织壳中。在TEM或荧光显微镜下研究了78 nm二氧化硅和45 nm荧光纳米球在血小板上的覆盖率。 IgG层与聚苯乙烯磺酸盐交替吸附在血小板上,并证明了其特异性的免疫识别和荧光抗IgG-FITC靶向性。不仅限于固定的血小板,活的血小板还被带有最外层肝素的聚离子包被。包被后大多数血小板仍存活且未激活,未观察到明显的细胞毒性。建立冠状动脉狭窄硅树脂模型以测试在狭窄产生的高剪切应力下封装的血小板功能。在血小板激活研究中,与未修饰的血小板相比,包囊的血小板释放的TXB 2 更少。流动实验后,肝素涂层的血小板在硅胶模型中不易粘附到胶原基质上。肝素外壳可能会阻止胶原蛋白与血小板表面糖蛋白之间可能的结合反应。总之,纳米工程血小板在高剪切应力下表达较少的活化和粘附。

著录项

  • 作者

    Ai, Hua.;

  • 作者单位

    Louisiana Tech University.;

  • 授予单位 Louisiana Tech University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号