首页> 外文学位 >Silicon-germanium, silicon-germanium carbide, and silicon carbide MOSFET simulation, optimization, and fabrication.
【24h】

Silicon-germanium, silicon-germanium carbide, and silicon carbide MOSFET simulation, optimization, and fabrication.

机译:硅锗,碳化硅锗和碳化硅MOSFET的仿真,优化和制造。

获取原文
获取原文并翻译 | 示例

摘要

For more than 30 years, MOSFET device technology has been improving at a drastic rate mainly due to successful device scaling, and the resulting increasingly smaller device dimensions and higher device performance in terms of higher packing density, higher device speed, etc. However, challenges in scaling of CMOS technology into the nanometer regime are approaching physical limits, which are very difficult to overcome, if not impossible. Since MOSFET drive current depends on carrier mobility, one way to address the challenges of improving MOS transistor performance is to enhance carrier mobility in the MOSFET channel. Compressively-strained Si1-xGex alloys are very promising in terms of increasing hole mobility.; In this work, sub-micron gate length buried Si1-xGe x channel PMOSFET modeling, simulation, and optimization were studied using the MEDICI simulator, and an optimized device structure is obtained. 100 nm gate length Si1-xGex channel PMOSFETs have been simulated, and optimized by the combination of process simulation (TSUPREM4) and device simulation (MEDICI). The simulation results show that the benefits of high hole mobility in a Si1-xGex channel still hold below 100nm channel length. A 100nm channel length Si1-xGe x, S1-x-yGexCy and Si1-yCy PMOSFET process was established. Not only is device performance enhancement observed but also a desirable threshold voltage (VT) and small short channel effects (SCE) are achieved by device and process optimization.; Drive current enhancements are demonstrated for 100nm channel length Si1-x-yGexCy and Si1-y Cy PMOSFETs compared to Si control PMOSFETs, and C provides high temperature strain-stabilization for strained Si1-xG x channels. Device performance enhancement and ease of integration can be achieved simultaneously by using a smaller Ge mole fraction and Si cap layer optimization. It is also demonstrated that surface channel operation in the Si1-xGex PMOSFET with deposited HfO 2 gate dielectrics can be used to recover mobility degradation due to the use of HfO2, and device performance enhancement and leakage current reduction is achievable with this concept. In order to fully exploit the high mobility benefits of Si1-xGex, Si 1-x-yGexCy, or Si1-yC y alloys, a Ni silicide technique with low resistivity for these alloys has been developed for device applications.
机译:30多年来,MOSFET器件技术一直在飞速发展,这主要归功于成功的器件缩放,以及由此带来的越来越小的器件尺寸和更高的封装性能,更高的封装密度,更高的器件速度等更高的器件性能。但是,挑战在将CMOS技术缩放到纳米级的过程中,物理极限正在接近,即使不是不可能的,也很难克服。由于MOSFET驱动电流取决于载流子迁移率,因此解决提高MOS晶体管性能挑战的一种方法是提高MOSFET沟道中的载流子迁移率。就增加空穴迁移率而言,压缩应变Si1-xGex合金非常有前途。在这项工作中,使用MEDICI仿真器研究了亚微米栅长掩埋Si1-xGe x沟道PMOSFET的建模,仿真和优化,并获得了优化的器件结构。已经对100 nm栅极长度的Si1-xGex沟道PMOSFET进行了仿真,并通过工艺仿真(TSUPREM4)和器件仿真(MEDICI)的组合进行了优化。仿真结果表明,Si1-xGex沟道中高空穴迁移率的优势仍然保持在100nm沟道长度以下。建立了100nm沟道长度的Si1-xGe x,S1-x-yGexCy和Si1-yCy PMOSFET工艺。通过器件和工艺优化,不仅观察到器件性能增强,而且还获得了理想的阈值电压(VT)和小的短沟道效应(SCE)。与Si控制PMOSFET相比,在100nm沟道长度的Si1-x-yGexCy和Si1-y Cy PMOSFET中,驱动电流得到了增强,并且C为应变的Si1-xG x沟道提供了高温应变稳定。通过使用较小的Ge摩尔分数和Si盖层优化,可以同时实现器件性能的提高和集成的简便性。还证明了在具有沉积的HfO 2栅极电介质的Si1-xGex PMOSFET中,表面沟道操作可用于恢复由于使用HfO2而导致的迁移率降低,并且利用该概念可以实现器件性能的提高和漏电流的减小。为了充分利用Si1-xGex,Si 1-x-yGexCy或Si1-yC y合金的高迁移率优势,已经开发了针对这些合金的低电阻率的硅化镍技术,用于设备应用。

著录项

  • 作者

    Shi, Zhonghai.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号