首页> 外文学位 >Lyapunov-based control for mechanical and vision-based systems.
【24h】

Lyapunov-based control for mechanical and vision-based systems.

机译:基于Lyapunov的机械和视觉系统控制。

获取原文
获取原文并翻译 | 示例

摘要

This Ph.D. dissertation describes the design and implementation of various control strategies centered around the following applications: (i) Global Output Feedback Control of Dynamically Positioned Surface Vessels: An Adaptive Control Approach, (ii) Nonlinear Coupling Control Laws for an Underactuated Overhead Crane System, (iii) Adaptive 2.5D Visual Servoing of Kinematically Redundant Robot Manipulators, and (iv) Robust 2.5D Visual Servoing for Robot Manipulators. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these four primary chapters can be found in chapter one.; In Chapter 2, we presented an adaptive output feedback tracking controller for dynamically positioned ship systems. The proposed control law achieves global asymptotic position tracking and does not require velocity measurements nor knowledge of the ship parameters. The global stability result is based on a stability analysis that involves the use of a non-quadratic Lyapunov function and exploits several properties inherent to the ship dynamic model. Simulation results were also given to illustrate the performance of the proposed control system.; In Chapter 3, we presented three controllers for an overhead crane system. By utilizing a Lyapunov-based stability analysis along with LaSalle's Invariance Theorem, we proved asymptotic regulation of the gantry and payload position for a PD controller and two nonlinear controllers. Experimental results were utilized to demonstrate that the increased coupling between the gantry and payload that results from the additional nonlinear feedback terms in the nonlinear coupling control laws, resulted in improved transient response.; In Chapter 4, a kinematic visual servoing controller is developed that ensures asymptotic regulation of the camera translation and rotation error systems while simultaneously compensating for uncertainty in the distance from the desired camera position to the stationary target plane. Specifically, by decomposing the homography into separate translation and rotation components, we were able to exploit both 2D image-space and projected 3D task-space (i.e., 2.5D visual servoing) information to construct the kinematic controller. Based on the desire to enhance the robustness of the control design, the integrator backstepping approach was utilized to incorporate the robot kinematic and dynamic models. Specifically, a joint torque control input was developed to ensure asymptotic regulation of the position and orientation of the camera held by the robot end-effector (camera-in-hand problem) of a kinematically redundant robot manipulator, despite parametric uncertainty in the dynamic model of the robot.; In Chapter 5, the 3-Dimensional (3D) position and orientation of a camera held by the end-effector of a robot manipulator is regulated to a constant desired position and orientation despite (i) the lack of depth information of the actual or desired camera position from a target, (ii) the lack of a geometric model of the target object, and (iii) uncertainty regarding both the angle and axis of rotation of the camera with respect to the robot end-effector (i.e., the orientation extrinsic camera parameters). By fusing 2D image-space and projected 3D task-space information (i.e., 2.5D visual servoing), a robust controller is developed that ensures exponential regulation of the position and orientation of the camera. The stability of the controller is proven through a Lyapunov-based analysis, and the performance of the controller is validated by numerical simulation results.
机译:本博士论文围绕以下应用描述了各种控制策略的设计和实现:(i)动态定位表面容器的全局输出反馈控制:自适应控制方法,(ii)欠驱动桥式起重机系统的非线性耦合控制律,(iii )运动学冗余机器人操纵器的自适应2.5D视觉伺服,以及(iv)机器人操纵器的稳健的2.5D视觉伺服。通过仿真或实验结果证明了在每个部分中找到的理论。在第一章中可以找到对这四个主要章节的介绍。在第2章中,我们介绍了用于动态定位的船舶系统的自适应输出反馈跟踪控制器。拟议的控制定律实现了全局渐近位置跟踪,不需要速度测量或船舶参数知识。总体稳定性结果基于稳定性分析,该分析涉及使用非二次Lyapunov函数,并利用了船舶动力学模型固有的多个属性。仿真结果也说明了所提出的控制系统的性能。在第3章中,我们介绍了桥式起重机系统的三个控制器。通过使用基于Lyapunov的稳定性分析以及LaSalle不变性定理,我们证明了PD控制器和两个非线性控制器的机架和有效载荷位置的渐近调节。实验结果被用来证明机架和有效载荷之间的耦合是由非线性耦合控制律中附加的非线性反馈项引起的,从而改善了瞬态响应。在第4章中,开发了一种运动视觉伺服控制器,该控制器可确保对摄像机平移和旋转误差系统进行渐近调节,同时补偿从所需摄像机位置到固定目标平面的距离的不确定性。具体来说,通过将单应性分解为单独的平移和旋转分量,我们可以利用2 D 图像空间和投影的3 D 任务空间(即2.5 < italic> D 视觉伺服)信息来构造运动控制器。基于提高控制设计的鲁棒性的需求,采用了集成器反推法来整合机器人的运动学模型和动态模型。具体而言,尽管动态模型中存在参数不确定性,但仍开发了关节扭矩控制输入,以确保对运动学上冗余的机器人操纵器的机器人末端执行器(手持摄像机问题)所持摄像机的位置和方向进行渐进调节。机器人的。在第5章中,尽管(i)缺乏,但由机器人操纵器的末端执行器支撑的摄像机的三维(3 D )位置和方向被调整为恒定的所需位置和方向。目标的实际或期望摄像机位置的深度信息的详细信息;(ii)缺少目标对象的几何模型;以及(iii)关于摄像机相对于机器人端的旋转角度和旋转轴的不确定性-效果器(即,定向外部相机参数)。通过融合2 图像空间和投影的3 D 任务空间信息(即2.5 D 视觉伺服),开发了一种鲁棒的控制器确保对摄像机的位置和方向进行指数调节。通过基于Lyapunov的分析证明了控制器的稳定性,并通过数值仿真结果验证了控制器的性能。

著录项

  • 作者

    Fang, Yongchun.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号