首页> 外文学位 >Frustrated Magnetism in Strongly Correlated Electron Systems
【24h】

Frustrated Magnetism in Strongly Correlated Electron Systems

机译:强相关电子系统中的受挫磁场

获取原文
获取原文并翻译 | 示例

摘要

A deep understanding of magnetism is essential for its application in magnetic semiconductors, spintronic devices and unconventional superconductors. In this work, we study magnetic structures and their corresponding excitations in several strongly correlated electron systems, where exotic orderings can be induced as a result of magnetic frustration and quantum fluctuations. We show that emergent spin textures can arise close to a magnetic field-induced quantum critical point, when the single magnon excitations have several degenerate non-coplanar minima. In this case, quantum fluctuations can lift such degeneracy and lead to the crystallization of the magnetic vortex strings.;Magnetic frustration also plays an important role in Fe-based superconductors. We analyze the spin excitations in the ordered as well as paramagnetic phase of these materials, and find that higher order spin exchanges are essential for understanding the inelastic neutron scattering experiments (INS). The presence of such higher order spin interactions has far-reaching consequences, potentially resulting in more exotic phases, such as the multipolar orders. In particular, we find propensity to ferro-quadrupolar order, which we propose as a candidate for the ground state of the iron selenide FeSe. We find that the calculated spin excitations in this quadrupolar state closely resemble the results of recent INS measurements.;In addition to electron spins, orbital physics also plays a prominent role in Fe-based superconductors. We study the interplay between spin and orbital degrees of freedom and show that the so-called nematic order can be naturally understood as the decoupling of the two transitions, when orbital ordering preempts long-range magnetic spin order. Our results reveal that magnetic frustration plays an important role in several strongly correlated electron systems, and elucidating its consequences is crucial for the understanding and potential application of these materials.
机译:对磁性的深刻理解对于其在磁性半导体,自旋电子器件和非常规超导体中的应用至关重要。在这项工作中,我们研究了几个高度相关的电子系统中的磁性结构及其相应的激发,在这些系统中,由于磁性受挫和量子涨落,可以诱导出奇特的有序性。我们显示出,当单个磁振子激发具有几个退化的非共面极小值时,出现的自旋纹理可能会接近磁场感应的量子临界点。在这种情况下,量子涨落可以解除这种简并性并导致磁涡流串的结晶。磁阻作用在铁基超导体中也起着重要的作用。我们分析了这些材料的有序和顺磁性相中的自旋激发,发现更高阶的自旋交换对于理解非弹性中子散射实验(INS)是必不可少的。这种高阶自旋相互作用的存在具有深远的影响,可能导致更奇特的阶段,例如多极阶。尤其是,我们发现铁四极有序,我们建议将其作为硒化铁FeSe基态的候选者。我们发现,在这种四极状态下计算出的自旋激发与最近的INS测量结果非常相似。除了电子自旋以外,轨道物理学在铁基超导体中也起着重要作用。我们研究了自旋和轨道自由度之间的相互作用,并表明,当轨道排序优先于远距离磁自旋序列时,所谓的向列顺序自然可以理解为两个跃迁的解耦。我们的研究结果表明,磁化挫折在几个高度相关的电子系统中起着重要作用,阐明其后果对于理解和潜在应用这些材料至关重要。

著录项

  • 作者

    Wang, Zhentao.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Condensed matter physics.;Theoretical physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号