首页> 外文学位 >Solar sail orbit operations.
【24h】

Solar sail orbit operations.

机译:太阳帆轨道运行。

获取原文
获取原文并翻译 | 示例

摘要

The inherent capabilities of solar sails and the fact that they need no onboard supplies of fuel for propulsion make them well suited for use in long-term, multiple-objective missions. They are especially well suited for the exploration of asteroids. In this dissertation, both hovering points and orbiting trajectories about point-mass asteroids using equations of motion for a perfectly reflecting solar sail spacecraft are found as discussed in Chapter I. The orbiting trajectories are stable and offer good coverage of the asteroid surface, although restrictions on sail acceleration and spacecraft altitude are needed for smaller asteroids.; Variations are then made to the solar sail and asteroid size and shape in Chapter II. It is shown that even under these circumstances, hovering points and stable orbiting trajectories still exist. The effect of the imperfectly reflecting sail is seen to cause a diminished solar radiation pressure force along the sun line and modifies the possible hovering locations. The effect of a non-spherical asteroid is modeled by using the J 2 gravity field contribution. Explicit predictions for the coupling between the (assumed dominant) solar radiation pressure and the gravity field perturbation are found.; Chapter III examines the idea of having a solar sail spacecraft use an Earth swing-by maneuver in order be in a position to go to an asteroid with a greater velocity when the best time opportunity comes. Simulations show that a sail can be flown toward the Sun and then back inside the Earth's gravitational sphere of influence with increased velocity such that the sail would then be in position to fly quickly toward an incoming Near-Earth Asteroid. Once the swing-by maneuver is accomplished, position and velocity of the spacecraft can be predicted in order to achieve a wide variety of situations for meeting Earth-approaching asteroids in shorter periods of time.
机译:太阳帆的固有能力以及它们不需要船上燃料来推进的事实使它们非常适合用于长期的多目标任务。它们特别适合于小行星的探索。如第一章所述,利用运动方程对完美反射太阳帆航天器的点质量小行星的盘旋点和轨道进行了研究。轨道运动是稳定的,并且可以很好地覆盖小行星表面,尽管存在一些限制。在航行中,较小的小行星需要加速和航天器高度。然后在第二章中对太阳帆和小行星的大小和形状进行了更改。结果表明,即使在这种情况下,仍然存在悬停点和稳定的轨道轨迹。可以看到,反射帆不完全的效果会导致沿太阳线的太阳辐射压力减小,并可能改变悬停位置。使用 J 2 重力场贡献来模拟非球形小行星的影响。找到了关于(假定的主要)太阳辐射压力和重力场扰动之间耦合的明确预测。第三章探讨了让太阳帆飞船使用地球绕行操纵的想法,以便在最佳时机到来时能够以更高的速度驶向小行星。模拟表明,帆可以朝着太阳飞行,然后以增加的速度回到地球的重力影响范围之内,这样帆就可以迅速飞向进来的近地小行星。一旦完成了摆动操作,就可以预测航天器的位置和速度,从而在较短的时间内达到与接近地球的小行星相遇的各种情况。

著录项

  • 作者

    Morrow, Esther Marie.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号