首页> 外文学位 >Generalized physically based modeling of machining processes and its verification.
【24h】

Generalized physically based modeling of machining processes and its verification.

机译:基于通用物理原理的加工过程建模及其验证。

获取原文
获取原文并翻译 | 示例

摘要

The capability to analytically predict output parameters of machining processes such as the chip flow angle and cutting forces for any sets of operating conditions will lead to optimization and development of machining operations. A physically based model is developed for the analysis of commonly encountered 3D metal cutting processes using arbitrarily oriented flat-faced tools.; In the upper bound analysis module, the projection of the uncut chip area on the rake face is divided into a number of elements parallel to an assumed chip flow direction. The area of each of these elements is used to find the area of the corresponding element on the shear surface using the ratio of the shear velocity to the chip velocity. Summing up the area of the elements along the shear surface, the total shear surface area is obtained. A new approach is introduced to obtain the friction area keeping the tool-chip contact length the same as in an orthogonal machining process, rather than keeping the tool-chip contact area constant as previously done. The cutting power is obtained by summing the shear power and the friction power. The actual chip flow angle and chip velocity are obtained by minimizing the cutting power with respect to both these variables. Unlike most of the previous studies that consider small values of the rake and inclination angles, a general formulation valid for arbitrary values of the inclination and rake angles is presented. The shape of the curved shear surface, the chip cross section and the cutting force obtained from this model are also presented. It is found that using this upper bound model, the chip flow angle is predicted accurately, but contact length and cutting forces are underpredicted.; In the 2D machining analysis module, Oxley's analysis of machining the most complete machining theory presented to date, has been extended to a broader class of constitutive equations and materials. The Johnson-Cook material model, Maekawa's history dependent power law material model and the MTS model are used to represent the mechanical properties of the material being machined as a function of strain, strain rate and temperature. A few changes are introduced into Oxley's analysis to improve the consistency between the various assumptions.; To improve the force prediction capability of the generalized upper bound model, a hybrid model is presented, wherein the upper bound analysis module is used for prediction of the chip flow angle, and is followed by application of the extended Oxley's analysis in the equivalent plane to predict cutting forces. (Abstract shortened by UMI.)
机译:通过分析预测加工过程的输出参数(例如任何工作条件下的切屑流角和切削力)的能力将导致优化和发展加工操作。开发了基于物理的模型,用于使用任意定向的平面工具分析常见的3D金属切削过程。在上限分析模块中,未切屑区域在前刀面上的投影分为平行于假定切屑流动方向的多个元素。使用剪切速度与切屑速度的比率,使用这些元素中每个元素的面积来查找剪切面上相应元素的面积。将沿剪切面的元素面积相加,得出总剪切面面积。引入了一种新方法来获得摩擦面积,以保持工具-切屑接触长度与正交加工过程中的相同,而不是像以前那样保持工具-切屑接触面积恒定。通过将剪切力和摩擦力相加来获得切削力。实际切屑流角和切屑速度是通过使这两个变量的切削力最小而获得的。与大多数以前的研究都只考虑较小的前角和倾斜角值不同,本文提出了适用于任意值的前角和倾斜角的通用公式。还介绍了从该模型获得的弯曲剪切表面的形状,切屑横截面和切削力。结果发现,使用该上限模型可以准确地预测切屑流角,但不能充分预测接触长度和切削力。在2D加工分析模块中,Oxley对机械加工的分析是迄今为止提出的最完整的加工理论,现已扩展到更广泛的本构方程和材料类别。 Johnson-Cook材料模型,前川史料的幂定律材料模型和MTS模型用于表示所加工材料的机械性能随应变,应变速率和温度的变化。 Oxley的分析中进行了一些更改,以提高各种假设之间的一致性。为了提高广义上界模型的力预测能力,提出了一种混合模型,其中上界分析模块用于预测切屑流角,然后在等效平面上应用扩展的Oxley分析。预测切削力。 (摘要由UMI缩短。)

著录项

  • 作者

    Adibi-Sedeh, Amir Hossein.;

  • 作者单位

    Wichita State University.;

  • 授予单位 Wichita State University.;
  • 学科 Engineering Mechanical.; Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;一般工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号