首页> 外文学位 >Integrated micromechanical resonant sensors for inertial measurement systems.
【24h】

Integrated micromechanical resonant sensors for inertial measurement systems.

机译:用于惯性测量系统的集成微机械共振传感器。

获取原文
获取原文并翻译 | 示例

摘要

Thumbnail-sized inertial measurement systems based on Micro Electro Mechanical Systems (MEMS) technology have been perceived as a breakthrough in the field of inertial navigation. However, even as micromechanical accelerometers have seen wide spread commercialization, vibratory micromechanical gyroscopes have not enjoyed similar success. Previous approaches to high-performance micromechanical gyroscope design have been complicated by two factors: first, the requirement for precise control of the trajectory of a multi-degree of freedom vibrating micromechanical structure, and second, the development of calibration schemes that must precisely identify system parameters that are often sensitive functions of ambient environmental variables. This thesis describes a new angular rate sensor, termed the “Resonant Output Gyroscope”, that considerably simplifies both the control system and the calibration procedure. In its simplest form the device comprises of three coupled micromechanical oscillators. Two of these oscillators sense the Coriolis force acting upon a third vibrating mass (in response to an input rotation rate) as a shift in their operating frequency. Detection of this frequency shift results in an estimate of the input angular motion. A prototype device fabricated at the Sandia National Laboratories has a measured (electronics-limited) noise floor of 0.3 deg/sec/ Hz and a scale factor of 42 mHz/deg/sec. A second-generation device fabricated at Analog Devices Inc. has an estimated noise floor of 18 deg/hr/ Hz .; Characterization of micromechanical resonator oscillators and micromechanical resonant accelerometers are detailed as well. Analytical results on noise and distortion performance of micromechanical resonator oscillators are backed up by measurements for a Pierce oscillator topology. Micromechanical resonator oscillators fabricated at the Sandia National Laboratories demonstrated a far-carrier noise floor of less than −105 dBc/Hz for center frequencies ranging from 115 kHz to 265 kHz. The noise performance of micro-mechanical oscillators is the basis for an analytical result of the degradation of the signal-to-noise ratio for resonant accelerometers beyond a certain noise corner frequency. This noise corner frequency is measured to be approximately 300 Hz for a surface-micromachined resonant accelerometer that has a measured scale factor of 17 Hz/g and a minimum detectable acceleration resolution of 40 μg/ Hz at an input frequency of 300 Hz.
机译:基于微机电系统(MEMS)技术的缩略图大小的惯性测量系统已被视为惯性导航领域的突破。然而,即使微机械加速度计已经广泛地商业化,振动微机械陀螺仪也没有获得类似的成功。以前的高性能微机械陀螺仪设计方法由于两个因素而变得复杂:首先,要求精确控制多自由度振动微机械结构的轨迹,其次,开发必须精确识别系统的校准方案通常是周围环境变量的敏感函数的参数。本文介绍了一种新型的角速度传感器,称为“谐振输出陀螺仪”,该传感器大大简化了控制系统和校准程序。在最简单的形式中,该设备包括三个耦合的微机械振荡器。这些振荡器中的两个感觉到科里奥利力(响应于输入转速)作用在第三振动块上的工作频率发生位移。该频移的检测导致输入角运动的估计。在桑迪亚国家实验室制造的原型设备具有0.3 deg / sec / Hz 的测量(电子限制)本底噪声和比例因子为42 mHz / deg / sec。由Analog Devices Inc.制造的第二代设备的估计本底噪声为18 deg / hr / Hz .;还详细描述了微机械谐振器振荡器和微机械谐振加速度计的特性。微机械谐振器振荡器的噪声和失真性能的分析结果通过皮尔斯振荡器拓扑的测量得到支持。桑迪亚国家实验室(Sandia National Laboratories)制造的微机械谐振器振荡器显示出的中心频率范围为115 kHz至265 kHz时,远载波本底噪声小于-105 dBc / Hz。微机械振荡器的噪声性能是谐振加速度计超过特定噪声转折频率后信噪比下降的分析结果的基础。对于表面微机械共振加速度计,该噪声转角频率经测量约为300 Hz,该加速度计的测量比例系数为17 Hz / g,最小可检测加速度分辨率为40μg/ Hz ,输入频率为300 Hz。

著录项

  • 作者

    Seshia, Ashwin Arunkumar.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 p.884
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号