首页> 外文学位 >Improving the accuracy of fluid-structure interactions analyses of patient-specific cerebral aneurysms.
【24h】

Improving the accuracy of fluid-structure interactions analyses of patient-specific cerebral aneurysms.

机译:提高特定于患者的脑动脉瘤的流体-结构相互作用分析的准确性。

获取原文
获取原文并翻译 | 示例

摘要

Accurate computational simulations are crucial to understanding the causes and potential treatment of the 27,000 cerebral aneurysms that rupture annually in the United States. While the accuracy and number of computational simulations has increased, modeling and meshing the geometry, and providing proper boundary and loading conditions remains a complex process. It is because of these complexities that most simulations rely on a uniform wall thickness with constant, isotropic material properties. Unfortunately, the stresses calculated for a cerebral aneurysm are highly susceptible to the quality of the model being used. This thesis addresses the issue of model fidelity and mesh quality by presenting algorithms to determine an approximate, or equivalent, wall thickness for patient-specific cerebral aneurysms and to create a new boundary-layer mesh sizing-function. The equivalent wall thickness is found by deforming the mesh of a healthy blood-vessel onto the aneurysm model, where the stretching of the mesh elements represents the weakening blood-vessel wall. A medial-ball based sizing function prevents overlapping in boundary-layer meshes and increases the usability of anisotropic, prismatic elements. With a more exact model of the aneurysm wall, clinicians will be provided multiphasic diagnostic, preventative, and curative information. Furthermore, future simulations will allow for early diagnosis and quantification of potential treatment options; with early intervention culminating in the best course of action being chosen for each individual patient. The contributions of this thesis are demonstrated through a series of fluid-structure interaction simulations, where use of the equivalent wall-thickness is shown to have a significant effect on the wall stresses. Furthermore, the deformation process used to calculate the equivalent wall thickness is shown to be able to map the anisotropic material directions of the vessel tissue onto the aneurysm itself.
机译:准确的计算模拟对于了解美国每年27,000例脑动脉瘤破裂的原因和潜在治疗至关重要。尽管计算仿真的准确性和数量有所增加,但是对几何图形进行建模和网格化以及提供适当的边界和加载条件仍然是一个复杂的过程。由于这些复杂性,大多数模拟都依赖于具有恒定的各向同性材料特性的均匀壁厚。不幸的是,针对脑动脉瘤计算出的压力极易受到所用模型质量的影响。本论文通过提出算法来确定特定于患者的脑动脉瘤的壁厚或等效壁厚,并创建新的边界层网格尺寸调整功能,从而解决了模型保真度和网格质量问题。通过将健康血管的网格变形到动脉瘤模型上可以找到等效的壁厚,其中,网格元素的拉伸表示血管壁变弱。基于中间球的尺寸调整功能可防止边界层网格中的重叠,并增加各向异性的棱柱形元素的可用性。利用更精确的动脉瘤壁模型,将为临床医生提供多阶段的诊断,预防和治疗信息。此外,未来的模拟将允许及早诊断和量化潜在治疗方案;尽早进行干预,最终为每个患者选择最佳的治疗方案。通过一系列的流体-结构相互作用模拟证明了本文的贡献,其中等效壁厚的使用对壁应力有显着影响。此外,用于计算等效壁厚的变形过程显示为能够将血管组织的各向异性材料方向映射到动脉瘤本身上。

著录项

  • 作者

    Johnson, Erick L.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号